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Abstract. A complete qualitative study of the dynamics of string cosmologies is presented for
the class of isotopic curvature universes. These models are of Bianchi types |, V and IX and
reduce to the general class of Friedmann—Robertson—Walker universes in the limit of vanishing
shear isotropy. A non-trivial 2-form potential and cosmological constant terms are included in
the system. In general, the 2-form potential and spatial curvature terms are only dynamically
important at intermediate stages of the evolution. In many of the models, the cosmological constant
is important asymptotically and anisotropy becomes dynamically negligible. There also exist
bouncing cosmologies.

PACS numbers: 9880C, 0450, 9880H

1. Introduction

One of the strongest constraints that a unified theory of the fundamental interactions must
satisfy is that it should lead to realistic cosmological models. There are known to be five
consistent perturbative superstring theories in ten dimensions (see, e.g., [1]). The type Il and
heterotic theories each contain a Neveu—Schwarz/Neveu—-Schwarz (NS—-NS) sector of bosonic
massless excitations that includes a scalar dilaton field, a graviton and an antisymmetric 2-
form potential. The interactions between these fields lead to significant deviations from the
standard, hot big bang model based on conventional Einstein gravity [2] and a study of the
cosmological consequences of superstring theory is therefore important.

In string cosmology, the dynamics of the universe below the string scale is determined
by the effective supergravity actions. The NS—NS string cosmologies contain the non-trivial
fields discussed above. Recently ([3], hereafter referred to as paper |), a complete qualitative
analysis for the spatially flat Friedmann—Robertson—-Walker (FRW) and axisymmetric Bianchi
type | NS-NS string cosmologies was presented. A central charge deficit was also included
and found to have significant effects on the nature of the asymptotic dynamics. This study
unified and extended previous qualitative analyses of this system [5-7].

In [4] (hereafter referred to as paper Il), a phenomenological cosmological constant was
introduced into the string frame effective action in such a way that it was not coupled directly
to the dilaton field. Such a term yields valuable insight into the dynamics of more general
string models containing non-trivial Ramond—Ramond (RR) fields. The interplay between
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such a cosmological constant and the 2-form potential had not been considered previously. It
was found that the interactions led to heteroclinic orbits in the phase space, where the universe
underwent a series of oscillations between expanding and contracting phases.

The purpose of the present paper is to extend the work of [3, 4] to both isotropic and
anisotropic cosmologies containing spatial curvature terms. In particular, we consider the
class of ‘isotropic curvature’ universes [8,9]. These are spatially homogeneous but contain
non-trivial curvature and anisotropy. The characteristic feature of these models is that the
three-dimensional Ricci curvature tensor is isotropic. In other wétd; is proportional to
k8;; on the spatial hypersurfaces and these surfaces therefore have constant curf8iture
The class of isotropic curvature universes contains the Bianchi type-I@) and V & < 0)
models and a special case of the Bianchi typed>(0) models [9].

The four-dimensional line element of these cosmologies is given by [8, 9]

ds? = —dr2 + eZa(t)[(wl)Z + e—zﬁﬂ(r)(wz)z + ezﬁﬁ(r)(ws)z], (1.1)

where the 1-form$w?, w?, »°} are givenin[8, 9]. The spatial hypersurfaces; constant, are

the surfaces of homogeneity. The variableparametrizes the effective spatial volume of the
universe and8 determines the level of anisotropy. We refer to it as the shear parameter.
In essence, the isotropic curvature models can be regarded as the simplest anisotropic
generalizations of the flatk = 0), open(k < 0) and closedk > 0) FRW universes,
respectively. The isotropic models are recovered whenO.

The paper is organized as follows. In section 2, we summarize the form of the effective
actions we consider. The cosmological field equations are derived and the general asymptotic
behaviour of the 2-form potential and spatial curvature is discussed. The global qualitative
dynamics for the different classes of models is determined in sections 3 and 4. We summarize
and conclude our results in section 5. The exact solutions corresponding to the equilibrium
points that arise in the analysis are presented in an appendix.

2. Cosmological field equations

2.1. String effective action

The NS—-NS sector of massless bosonic excitations is common to both the type Il and heterotic
superstring theories. The four-dimensional, string effective action for the NS—NS fields can
be written as [14]

S = /d4x V=g e *[R+(V®)? — LH,,;, H"" — 2A], (2.1)

where the string couplingg? = e®, is determined by the value of the dilaton fiett, the
spacetime manifold has metrig,,, and Ricci curvatureR, the antisymmetric 2-formB,,,,
has a field strengtl/,,,, = 9, B,,; andg = detg,,,. The central charge deficit of the theory
is denoted by the constamt,. The value of this term depends on the conformal field theory
that is coupled to the string and it can be positive or negative. Such aterm may also arise from
the compactification of higher-dimensional form fields or non-perturbative corrections to the
self-interaction of the dilaton field [15].

The 3-formH,,, is dual to a 1-form in four dimensions and the field equationBgyr is
solved by the ansatz [16]

H"* = ey, o, (2.2)

wheree*V** is the covariantly constant 4-form. The scadamay be interpreted as a pseudo-
scalar ‘axion’ field. The Bianchi identity, H,,. = 0, is then solved by reinterpreting this
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constraint as the field equation ferand this latter equation can be derived from the dual
effective action [16]

S = f d'x V=g e ®[R+ (V®)? — 36%(Vo)? — 2A]. (2.3)

We establish the dynamics of cosmological models derived from equation (2.3) in section 3.
In paper I, the action

S = /d4x V=g{e *[R+(V®)* — 16 (Vo)?] — Awm]} (2.4)

was considered, wherg), was interpreted as a phenomenological cosmological constant
arising from the interaction potential of a slowly rolling scalar field. We now proceed to discuss
this action within the context of the massive type IIA supergravity theory in ten dimensions
[10]. This theory represents the low-energy limit of the type IIA superstring and has been
the subject of renewed interest recently following the advances that have been made in our
understanding of the non-perturbative features of string theory [12, 13].

In this theory, the NS—-NS 2-form potential becomes massive. In the absence of such a
field, the action is given in the string frame by [12]

S = /dlox V—gwofe [Ro+ (VS')Z] - %FABFAB - 4_18FABCDFABCD - %mz} (2.5)

where ¢ represents the ten-dimensional dilaton field, is the cosmological constant and
A=(01,...,9), etc. The antisymmetric field strengthgz and F4zcp for the 1-form and
3-form potentials represent RR degrees of freedom because they do not couple directly to the
dilaton field [1]. The massless theory is recovered whes O.

Maharana and Singh [11] have employed the Kaluza—Klein technique [18,19] to
compactify the ten-dimensional theory (2.5) on a six-dimensional torus. We consider a
truncation of the dimensionally reduced four-dimensional action, where we include only the
components of the 4-form on the four-dimensional external spacetime. We therefore neglect
the moduli fields arising from the compactification of the form fields and the gauge fields
originating from the higher-dimensional metric. The effective four-dimensional action is then
given by

S = /d4x V=gle®[R+ (VD) — 6(Vy)?] — &Y Fupuc F"" — im?e }, (2.6)

where the four-dimensional dilato, is defined in terms of the ten-dimensional dilaton by
® = ¢ — 6y andy parametrizes the volume of the torus.

The Bianchi identity for the 3-form potential is trivially satisfied in four dimensions and
its field equation is solved by the ans#t?"* = Qe 7 e***, whereQ is an arbitrary constant
ande*"** is the covariantly constant 4-form. Applying this duality, together with the conformal
transformation

G = Q%8s QP=e? (2.7)
implies that the effective four-dimensional action may be expressed in the Einstein frame as

S = /d4x V=g[R - 1(Vo)2 - 1(Vy)? — 1022 V3 _ L1220V, (2.8)

wherey = /12y represents a rescaled modulus field.
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Without loss of generality, one may perform linear translations on the dilaton and modulus
fields such that the parametapsandm become effectively equal. Thus, action (2.8) may be
written in the form

5= / dx VB[R - L@ — 1Ty - AnePcost(v3y)].  (2.9)

where Ay is a positive-definite constant. It follows, therefore, that the 4-form and ten-
dimensional mass parameter together provide an effective potential for the modulus field
with a global minimum located at = 0. Consequently, the internal space can become
stabilized for this specific compactification and a consistent truncation of the effective action
is therefore given by specifying= 0 in equation (2.9). Applying the inverse of the conformal
transformation (2.7) thenimplies that the effective string frame action is given by equation (2.4)
when the axionfield is trivial. Thus, atruncated form of equation (2.4) is relevant to the type 1A
theory. The dynamics of these models is considered in section 4.

For the purposes of deriving the cosmological field equations from the effective actions
(2.3) and (2.4), we combine these two expressions into the single action

S = fd4x V=g{e®[R+ (V®)* — 36*(Vo)? — 2A] — Awm]} (2.10)

where it is understood that eitharor Ay should be set to zero. We assume that all massless
degrees of freedom are constant on the surfaces of homogeneityconstant. The field
equations derived from action (2.10) for the isotropic curvature metric (1.1) are then given by

@—ap—3p+K+iAue™* =0 (2.11)

2¢ —¢® — 32 —6p%+3p —3K+2A =0 (2.12)

f—Bp=0 (2.13)

R +2aK =0 (2.14)

p+6ap=0 (2.15)
together with the generalized Friedmann constraint equation

342 — @2+ 6%+ 1p — 3K +2A + Ane’™™* =0, (2.16)
where

=0 -3 (2.17)
defines the ‘shifted’ dilaton field [2, 20],

p = 52ePtt (2.18)
may be interpreted as the effective energy density of the pseudo-scalar axion field [6],

K = 2k exp(—2a) (2.19)

represents the spatial curvature teangndg are defined in equation (1.1), and a dot denotes
differentiation with respect to cosmic time,

The modulifields that may also arise in the string effective action from the compactification
of higher dimensions have not been included in equation (2.1) and it is assumed, in particular,
that the internal dimensions are fixed. We emphasize, however, that in the NS-NS model
(Am = 0), one may readily include the dynamical effects of these extra dimensions in the case
of atoroidal compactification, where the internal space has the top®legys® x St x - - - x S1,
by reinterpreting the shear parameigrjn the field equations (2.11)—(2.16) [3, 19]. Modulo
a trivial rescaling, the moduli fieldg,,, that parametrize the radii of the circle®, have the
same functional form in the field equations as the shear term. These moduli may therefore be
combined with the shear by replacigg with an expression of the fori? = g2+ > 2.
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2.2. Asymptotic behaviour

Before concluding this section, we make some general remarks regarding the asymptotic
behaviour of the cosmological models discussed above.

It can be shown that the action (2.10) is invariant under a glsh&P, R) transformation
acting on the dilaton and axion fields when the cosmological constaatel A vanish [16].

The symmetry becomes manifest in the conformally related Einstein frame (2.7) and may be
employed to generate a non-trivial axion field from a solution where such a field is trivial [21].
Solutions containing a dynamical axion field are known as ‘dilaton—axion’ cosmologies. The
constant axion solutions are referred to as ‘dilaton—vacuum’ solutions and are presented in
equations (A.1).

The functional form of the dilaton—axion cosmologies has been derived [21]. The general
feature exhibited by these models is that the axion field is dynamically important only for a
shorttime interval. The solutions asymptotically approach one of the dilaton—vacuum solutions
(A.1) in the high- and low-curvature regimes. The axion field also results in a lower bound
on the value of the dilaton field and therefore the string coupling. Howevers &2, R)
symmetry is broken when either of the cosmological constants is present in the action (2.10)
[22] and analytical solutions are not known in this case, even in the isotropic(finsit 0).

In addition, the variableX and p in equations (2.14) and (2.15) may, in general, be
combined to define the new variable

>

k)

=
)

(2.20)

>

p+
This implies that equations (2.14) and (2.15) are equivalent to the evolution equation
E=-2x(1- E?. (2.21)

Hence all of the equilibrium points occur either far = 0 or for 22 = 1 and this implies that
eitherp = 0 (E = —1) or K = 0 (E = +1) asymptotically ifx' # 0.

In general, equations (2.11)—(2.16) define a four-dimensional dynamical system.
(Although there are five ordinary differential equations (ODES), equation (2.16) may be
employed to globally reduce the system by one dimension.) In the cases in which all of
the equilibrium points lie orE? = 1, the asymptotic properties of the string cosmologies can

Table 1. The equilibrium points/sets obtained in this paper are listed in the first column and
the location of the corresponding exact solutions is given in the second column. The equivalent
equilibrium points (with different notation) in papers | [3] and Il [4] are listed in the appropriate

row.
This paper Equation Paper | [3] Paper Il [4]

L*(S1, %)% (A1) Ly, V, (R, A, S, 51,50 W, W , (Suu, S1, 52)?
Ly, (C)? (A3),(A4) (€ —

Y (A.5) — F

R, A (A7) — R, A

s* (A.2) — —

N (A.6) — —

@ The equilibrium points in parentheses in the first row are just endpoints to the lines or w.
Similarly, equilibrium pointC in the second row is the endpoint for the lihg for Y1 = Y> = 1.
(See the text for the definition df;.) The pointsR and A in the first row represent different
solutions to those represented by the poindA in the fourth row. Also, in the third row, point
F corresponds to poirf; only.
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be determined from the dynamics in the three-dimensionalsetsO or K = 0. The latter
three-dimensional dynamical system was studied in papers | and II.

In view of this, we explicitly examine the three-dimensiopat 0 case in what follows.
The only case in which there exist equilibrium points witk="0 but22 # 1 occurs in the NS—
NS case Ay = 0) in whichK > 0 andA > 0. We shall examine the full four-dimensional
system in this case, although the three-dimensional sybsed still plays a principal role in
the asymptotic analysis.

All solutions represented by the equilibrium points that arise in this work are presented
in the appendix. Some of these points also arose in papers | and Il, where they were labelled
differently. In table 1, we list all the equilibrium points obtained and unify the notation
employed in the different works.

3. Non-zero central charge deficit Ay = 0)

In this section we perform the qualitative analysis for the NS—NS string effective action (2.10)
with Ay = O for an arbitrary central charge deficit. Through equation (2.16), we eliminate
the variableo from the field equations, and make the following definitions:

. . .2
XE&, YEQ, ZEGiZ,
o £ £ 61
U_:|:3K V_:I:ZA d_Ed
g2 Tog2 d— dT’

The= signs in the definitions fay andV are to ensure thdf > 0andV > 0when necessary.
With these definitions, all variables are bounded such that 2, Y2, Z, U, V} < 1 and
equation (2.16) now reads

106 2=Y’2UFV-X*-Z>0. (3.2)

The variablet is defined in each of the following four cases (the section in which they
occur is indicated in parentheses) by:

e A>0
x K > 0: £2 = 3K + ¢? (section 3.1),
x K < 0: £2 = ¢? (section 3.2),
e A<O
x K > 0: £2 = 3K + @2 — 2A (section 3.3),
x K < 0: £2 = 92 — 2A (section 3.4).
For example, considex > 0 with K > 0; for this case’2 + U = 1 and equation (3.2) reads
1pE2=1-V-X*-Z>0. (3.3)
Hence, we usé¢X, V, Z} as the phase space variables (see section 3.1 for details). We now
consider each of these cases in turn and introduce subsceptd, 2, 3, 4) to the variables
{X,Y, Z, U, V}to distinguish the different cases.

For each case, we will set up the four-dimensional dynamical system, followed by a
discussion of thek = 0 invariant set as examined in paper |. Note that in section 3.2 the
K = 0 case is identical to that presented in section 3.1 and is therefore omitted from that
section. Similarly, there will be n& = 0 discussion in section 3.4 since it is discussed in
section 3.3. We will then examine the= 0 invariant set. As discussed in section 2.2, all
equilibrium points discussed below which have-'0 also haveE? # 1, and hence generically
the orbits asymptote towards the equilibrium points in one of the invariang set8 orK = 0.

The qualitative behaviour of the four-dimensional phase space in each case is then examined.
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3.1. Thecas& > 0, K > 0

We definet? = ¢2+3K and utilize the positive signs féf, andV; as defined by equation (3.1).
From the generalized Friedmann equation we have that

0< X2+Z1+Vi <1, YZ2+U; =1, (3.4)

and therefore we may elimina, (which is proportional toK), and consider the four-
dimensional system of ODEs forQ {X2, Y?, Z;, V1} < 1.

dx 1

d_Tl = ﬁ(l — X2)(2+Y2) —V3(Z1+ Vi) + X1Y1(1— X2 — Z1),  (3.5)
dari _ _y2 2 i

ar (1 Y1)<X1+Zl+ \/§X1Y1>, (3.6)
dZ; 2 1 2

T = 221[1/1(1 X;—Z1)+ ﬁXl(l Yl)], (3.7)
avi _ 2 1 2

T zvl[yl(xl +Z1) ﬁxl(l Yl)]. (3.8)

The invariant set¥? = 1, X2+ Z, + V; = 1, Z; = 0 andV; = 0 define the boundary of
the phase space. The equilibrium sets and their corresponding eigenvalues (derngtaceby
given by

L*: Vi=41,Z1=1- X3V, =0

(}\.]_, )\.2, )»3, )»4) = <:F%3[\/§:E Xl], :FZ, O, —2«/§|:X1 + %]), (39)

Ly: X1=0,Z1=0Vi=32+YD);

1 1
(Axs A2, A3) = (E[Yl + E,/lQYf - 16}, 2Y1, 0). (3.10)

The zero eigenvalues arise because these aliaeslof equilibrium points. Here, the global
sources are the linds, (for Y1 > 0 org > 0) andL~ (for X1 < 1/+/3). The global sinks are
the linesLy (for Y1 < 0) andL* (for X1 > —1/+/3).

This case iglifferentfrom the other three cases to be considered in this section, since it
is the only one with the line of equilibrium points;, insidethe phase space. This line acts
as both sink and source, and corresponds to the exact static solution (A.3) which generalizes
the static ‘linear dilaton—vacuum’ solution (A.4) [23]. This solution was examined in [7] for
¢ > 0 and was shown by a perturbation analysis to be a late-time attractor.

The linesL* correspond to the spatially flat, dilaton—vacuum solutions (A.1). The
corresponding stable solutions are in the range —% for L* andh,, < %forL*, respectively.

3.1.1. Theinvariantsek = Ofor A > 0.  This invariant set was studied in paper |, and the
variables{X,, Z;,v=1— Xf — Z; — Vi} were used. It was found tha is amonotonically
increasingfunction (as itis in the full four-dimensional set). The generic early-time behaviour
of trajectories is to asymptote towards the linear dilaton—vacuum solution (A.4), represented
by the pointC, where all degrees of freedom excepare dynamically static. To the future,
these solutions asymptote towards the lirfefor X; > —1/+/3. We note that the poir€ is

theY; = 1 endpoint of the lind.;. Figure 1 depicts this phase space.
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—

Figure 1. Phase diagram for the system (3.5)—(3.8) in the NS-NS-(0) sector withp # 0 and

K = 0. The labelL* refers to dine of equilibrium points. In this phase spage; 0 is assumed.

The labels in all figures correspond to those equilibrium points discussed in the text. Throughout,
large full circles will represent sources (i.e. repellers), large grey-filled circles will represent sinks
(i.e. attractors), and small full circles will represent saddles. Grey curves (in subsequent figures)
represent typical trajectories found within the two-dimensional invariant sets, broken black curves
are those trajectories along the intersection of the invariant sets and full black curves are typical
trajectories within the full three-dimensional phase space.

3.1.2. Theinvariantset = Ofor A > 0, K > 0. Inthep = 0 case, the system reduces
to the three dimensions 41, Y1, Z1} (V1 = 1 — X% — Z1). The equilibrium points are
the linesL* with eigenvalues.1, A, and A3 (from section 3.1), and the two endpoints of
L, with eigenvalues.. and iz (from section 3.1). These endpoints are specified by the
conditionY? = 1 and we denote them k", where the 4’ in the superscript reflects the
sign of Y;.

For this invariant set the entire ling" acts as a global sink and the entire lihe acts
as a global source. Furthermore, we note thatlfﬁrx, = 0, and so these two points are
non-hyperbolic. However, the eigenvectors associated with these zero eigenvalues are both
[—2/+/3, 1, 0] and are completely located in tki&, ¥1)-plane. Hence, if we choos& = 0
and rotate th€X, Y1) axes such that

V3 2
x = (Y 1) - —X y = (Y D+ —X
x=T1FD > X1 y=F1F1 ﬁl,

we see that in the vicinity of the equilibrium point, the trajectories alofgy y = O are also
along these eigenvectors. Hence, foe 0 and smalk, it follows that
dx

~

3
ar = 7
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Figure 2. Phase diagram for the system (3.5)—(3.8) in the NS-NS-(0) sector withp = 0 and
K > 0. The labels.* and L~ refer tolines of equilibrium points, and the labels;” and |
represent the equilibrium points which are the endpoints of theZlinéfor which X; = +1 and
X1 = —1, respectively). In this phase spages 0 is assumed. See also the caption to figure 1.

Consequently, fol; = +1, the trajectory along asymptotes towards the equilibrium point,
whereas the trajectory alotigor Y; = —1 asymptotes away from the equilibrium point. This
implies that the pointﬂf are saddle points. The phase space is depicted in figure 2.

The quantityX/+/Z; is monotonically decreasing. Such a monotonic function excludes
the possibility of periodic or recurrent orbits in this three-dimensional space. Therefore,
solutions generically asymptote into the past towdtdsand into the future towards*. In
this three-dimensional set, spatial curvature is dynamically important only at intermediate
times.

3.1.3. Qualitative analysis of the four-dimensional systeifhe qualitative dynamics in the

full four-dimensional phase space is as follows. The past attractors consist of tlie lioe

X1 < 1/+4/3 and the lineLy for Y1 > 0. The future-attractor sets consist of the lidgsfor

X1 > —1/+/3 and the lineL, for Y; < 0. We note that;//V; is monotonically increasing

and this implies that there are no periodic or recurrent orbits in the full four-dimensional phase
space. Therefore, solutions are generically asymptotic in the past to either the lifoe
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hy < % ortothelineL; forn > 0. Similarly, solutions are generically asymptotic in the future
to eitherL* for h, > — or Ly forn < 0.

SinceY;/+/V1 is monotonically increasing; — +1 or V; — 0 asymptotically to the
future. These limits represent global sinks on the life Converselyy; —- —1orV; — 0
asymptotically to the past, corresponding to the global sources on the1in€here are also
equilibrium points for finiteY; = Y, inside the phase space on the liheg Again, since
Y1/+/V1 is monotonically increasing, the poirits < 0 are global sinks ant, > 0 are global
sources. All of this is consistent with the above discussion presented in section 2.2 regarding
the generic asymptotic behaviour.

We note that the reflection’s; — —X; andY; — —Y; are equivalent to a time reversal of
the dynamics. Therefore, there are orbits starting on thellin€or X; < 1/+/3) and ending
on thelineL; (for Y, < 0). Similarly, there are orbits which begin on the lihge(for Y, > 0)
and end on the ling* (for X; > —1/+4/3). Due to the existence of the monotonic function
and the continuity of orbits in the four-dimensional phase space, solutions cannot start and
finish onL1. This is best illustrated in the invariant sét = 0. In addition, orbits may start
on the lineL~ (for X; < 1/+/3) and end on the ling* (for X; > —1/+/3). Investigation of
the invariant seZ; = 0 also indicates which sources and sinks are connected; not all orbits
from L~ can evolve towards*.

Although the line<.* lie in both of the invariant sets = 0 and_I? =0, the lineL, does
not. On this line X; = 0, and the solutions are therefore stdéic= 8 = 0). Equation (2.21)
then implies that the axion field and spatial curvature can both be dynamically significant at
early and late times for the appropriate orbits.

3.2. Thecas& > 0,K <0

In this case, we choose the negative signifgin equation (3.1), the positive sign f&p, and
the definitions? = ¢2. The generalized Friedmann constraint (2.16) now implies that

0K X2+ Zo+Up+ Vo < 1. (3.11)

For this systemY? = 1, and so the four-dimensional system, consisting of the variables
0 < {X3, Z,, Up, Vo} < 1, is given by:

%:\/§(1—X§—22—V2—§U2)+X2(1—X§—Zz), (3.12)
& 2z,0-x2-2)>0 (3.13)
% = —2U2<X§ +Zo+ %X2>, (3.14)
% = —2V(X5+Z2) <O. (3.15)

The invariant set9(§ +Z,+Uy+Vo=1,7Z, =0, V, =0, U, = 0 define the boundary of
the phase space. The equilibrium sets and their corresponding eigenvalues (dengtaceby
given by

S*: X2=—ﬁ, Z,=0, Up = 3, Vo =0;

(A1 22, 23, 1a) = (-5, 5. 3. 9)- (3.16)
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C: X, =0, Z> =0, U, =0, Vo=1;
()"la )"27 )"35 )"4) = (17 05 27 O)a (3‘17)
L*: Z,=1- X2, U, =0, Vo =0;

(A1, 22, A3, Aa) = (—%[xz ++/3].-2,0, —2\/§|:X2 - %D (3.18)

The pointC represents the static ‘linear dilaton—vacuum’ solution (A.4). The saidle
represents the-’ branch of the Milne solution (A.2), where only the curvature term and scale
factor are dynamic.

3.2.1. The invariant set = Ofor A > 0, K < 0. Inthep = O case, the system reduces to
the three dimensions ¢¥,, Z,, Uy} (Vo = 1 — X§ — Z, — U3). The equilibrium points are
the same as above with eigenvalagsi, andiz. We note that for this invariant set the entire
line L* acts as a global sink and acts as a source. Although one of the eigenvalues for the
pointC is zero, it is shown in the following subsubsection that this point is a source in the full
four-dimensional phase space. The argument is identical in this subsection.

The variableZ, is monotonically increasingand as such we see that the shear term is
negligible at early times, but becomes dynamically significant at late times. There are no
periodic or recurrent orbits in this three-dimensional phase space due to the existence of this
monotonic function. In general, solutions asymptote into the past towards the static solution
(A.4) (pointC). Solutions asymptote into the future towaids Figure 3 depicts this three-
dimensional phase space.

3.2.2. Qualitative analysis of the four-dimensional systeifhe qualitative behaviour for the
invariant setK = 0 is discussed in section 3.1.1 (see figure 1). In the four-dimensional set,
the pointC is non-hyperbolic because of the two zero eigenvalues. However, it can be shown
that this point is a source in the four-dimensional set by the following argument. We first
note that the variabl&, is monotonically increasing and hence orbits asymptote into the past
towards the invariant set, = 0. Similarly, V» is a monotonically decreasing function, and so
orbits asymptote into the past towards laig€di.e. V. = 1). This implies that they asymptote
towards the poinC.

Since Z, = 0 asymptotically, let us consider the invariant s& = 0, where
equations (3.12)—(3.15) become

dx -
d—T2 = V3(1— X2 - Vo — 205) + X5(1— X3), (3.19)
du; > 1
— = 2U, X5+ —=X2|, 3.20
i = -2v(x+ ) 3.20)
dv;, 5
—= = -2V, X5. 3.21
o 2X3 (3.21)

Itis clear from equation (3.21) th&b increases monotonically into the past. Now, this three-
dimensional phase space is bounded by the suXgce U, + V, = 1, the ‘apex’ of which

lies atV, = 1 (andX, = U, = 0). Therefore, all orbits in or on this phase space boundary
lie belowV, = 1, and therefore asymptote into the past towafgls- 1. To further illustrate
that this point is indeed a source, it is helpful to consider the invarianEset U, = 0,
X2+ V, = 1. In the neighbourhood af, equation (3.19) becomesd/dT = X»(1 — X3),
indicating that orbits are repelled frofy, = 0. Hence, the point is the past attractor to the
full four-dimensional set.
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Figure 3. Phase diagram for the system (3.12)—(3.15) in the NS-NS-(0) sector withp = 0
andK < 0. Note that.* represents kne of equilibrium points. See also the caption to figure 1.

The future attractor for this set s the lifié (for X, > —1/+/3). BothC andL* lie in both
of the invariant sets = 0 andK = 0, which is consistent with the analysis of equation (2.21).
We conclude, therefore, that the spatial curvature and the axion field are dynamically important
only at intermediate times, and are negligible at early and late times. The dynamical effect of
the shear becomes increasingly important because the variginlereases monotonically. On
the other hand, the variable decreases monotonically and the dynamical effect of the central
charge deficitA, becomes increasingly negligible. In addition, the existence of monotonic
functions in the four-dimensional phase space prohibits closed orbits and serves as proof of
the evolution that is described above.

3.3. Thecas& <0, K >0

We choose the positive sign fol; and the negative sign fdf; in equation (3.1) to ensure that
these variables are positive definite. We also deffe= @2 + 3K — 2A for this case. The
generalized Friedmann constraint equation can then be rewritten as

0< X3+Z3< 1, Y2+ Us+Vz=1 (3.22)
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We again eliminaté/; (which is proportional t& ), and consider the four-dimensional system
of ODEs for 0< {X3, Y2, Z3, V3} < 1

ax 1

d_T3 = (1— X3 - Z3)(V3 + X3¥3) — fg(l — Y2 - V3)(1- X3 - Zy), (3.23)
d¥s _ 1 ¢ vi1_vy? +(1-v2)(x2+ 3.24
d_T_%, 33( —Yg—Vs) (_Y3)(X3 Za), (3.24)
% = 223[%3)(3(1 — Y2 - V3)+¥3(1— X3 - Z3)i|, (3.25)
% = 2%[%3)(3(1 —YZ—V3) - Y3(X5+ zg)}. (3.26)

The invariant set$’32 + V3 =1, X§ + Z3 =1, Z3 = 0 define the boundary of the phase space.
The equilibrium sets and their corresponding eigenvalues (denotepdrg

L*: Y3 =41, Z3=1- X3, V3 =0;

1
(A1, Ao, A3, A4) = <:F V3£ X3],¥2,0, :FZ\/é[— + Xs]) (3.27)

-

V3 V3
where again the zero eigenvalues arise because theselaresaf equilibrium points. Here,
the global sink is the liné* for X3 > —1/+/3 (saddle otherwise) and the global source is the
line L~ for X3 < 1/+4/3 (saddle otherwise). Stable solutions on the liriecorrespond to the
rangeh, > —3. The stable solutions oh~ arise wheni, < 2.

3.3.1. The invariant seK = 0 for A < 0. This invariant set was studied in paper I, the
dynamics of which are as follows. The variabl€s and Y3 are monotonically increasing
functions, corresponding @ andg (respectively). The former implies that these trajectories
represent cosmologies that are initially contracting and then re-expand. In paper |, the third
variable used was = 1 — X3 — Zs. This is proportional too and is only dynamically
significant at intermediate times. It asymptoted to zero into the past and future, indicating that
the axion field is negligible at early and late times. All the equilibrium points in this invariant
set are represented by the dilaton—vacuum solutions (A.1) (thelitigsIn general, orbits
asymptote into the past towards the lihe (for X3 < 1/+4/3), and asymptote to the future
towards the line.* (for X3 > —1/+/3). Figure 4 depicts this three-dimensional phase space,
using the variable§X3, Y3, «}.

3.3.2. The invariant set = Ofor A < 0, K > 0. Sincea # 0 at the equilibrium points,
we examine thep = 0 case, where the system reduces to the three dimensiangs, Vs}
(Zs = 1 — X2). The equilibrium points are the same as above with eigenvalyes, is.
We note that the entire line* acts as a global sink and that the entire lineacts as a global
source in this invariant set. The functitg/./Vz is monotonically increasing, eliminating the
possibility of periodic orbits. Figure 5 depicts this three-dimensional phase space.

3.3.3. Qualitative analysis of the four-dimensional systeifthe qualitative dynamics in the

full four-dimensional phase space is as follows. The global repellers and attractors are the lines
L~ andL*, respectively. Orbits generically asymptote into the past towards thé fingor

X3 < 1/+/3), and into the future towards' (for X3 > —1/+/3). In the former case the stable
solutions are given by the ‘+’ branch of equation (A.1) figr< % The stable sinks are given
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Figure 4. Phase portrait for the system (3.23)—(3.26) in the NS-NS:(0) sector fork = 0 and
o # 0. Note that the labels* and L~ refer tolinesof equilibrium points. See also the caption to
figure 1.

by the ‘—’" branch witha, > —%. Again, we see that the curvature term, axion field and the
central charge deficit are dynamically important only at intermediate times. The existence of
themonotonically increasinfunction Y3//Vz excludes the possibility of periodic orbits and
serves to verify the above description of the evolution of the solutions in the four-dimensional
set.

3.4. Thecas& <0,K <0

For this case, the appropriate definition for the varidble £2 = ¢ — 2A and we choose
the negative signs for botti, andV, in equation (3.1). The generalized Friedmann constraint
equation is written as

0 X3+Z4+Us< 1, Y2+ V=1 (3.28)

TreatingV, as the extraneous variable results in the four-dimensional system consisting of the
variables 0< {X2, Y2, Z4, U4} < 1is given by:

dx 2

d—T“ = (1— X2 — Z4)(V3+X4Ys) — Nk (3.29)
% = (1—-Y})(X5+Z4) > 0, (3.30)
4z _ 2Z4Y4(1 — X5 — Z4), (3.31)

dT
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Figure 5. Phase diagram for the system (3.23)—(3.26) in the NS-N& () sector forp = 0 and
K > 0. Note that.* andL~ represenlinesof equilibrium points. See also the caption to figure 1.

du, 2 1

—— = —2U4| Y4 X5+ Z4) + —=X4|. 3.32

- 4[4(4 4)f34} (3.32)
The invariant set(2 + Z, + Uy = 1, Z4 = 0, Y? = 1, U4 = 0 define the boundary of

the phase space. The equilibrium sets and their corresponding eigenvalues (dengtactby

given by

1
S+ X4::F73, Y, = +1, Z4s =0, U4::—23;
()»1, )»2, )»3, )»4) = (:l:%, :F:_Z;v :t%, :l:g), (333)
L*: Y4 =41, Zs=1- X3, Us=0;

()»1, )»2, )»3, )»4) = (:F \/é + X4], :FZ, 0, :|:2\/§|:i + X4:|> (334)

-
V3 V3
The global source for this system is the libe (for X4 < 1/4/3,, < 1) and the global sink

is the lineL* (for X4 > —1/+/3, h, > —1). The saddle pointss*, are represented by the
Milne models (A.2), whereS™ corresponds to the-’ solution andS ™ to the ‘+’ solution.
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Figure 6. Phase portrait for the system (3.29)—(3.32) in the NS-NS<(0) sector withp = 0
andK < 0. Note thatL* and L~ representines of equilibrium points. See also the caption to
figure 1.

3.4.1. The invariant seb = Ofor A < 0, K < 0. This system reduces to the three
dimensions off X4, Y4, Z4} (Us = 1 — Xﬁ — Z4). The equilibrium points are the same as
above with eigenvalues,, 1,, A3. The entire lined.* and L~ now act as a global sink and
source, respectively. Recurrent orbits are forbidden by the existence of the monotonically
increasing variablé’y. Hence, solutions generically asymptote into the past (future) towards
the ‘+' (* =) dilaton—vacuum solutions (A.1) and the curvature term and central charge deficit
are dynamically significant only at intermediate times. Figure 6 depicts this three-dimensional
phase space.

3.4.2. Qualitative analysis of the four-dimensional systeifhe dynamical behaviour in the
invariant setk = 0 is identical to that described in section 3.3.1 (see figure 4). The qualitative
dynamics in the full four-dimensional phase space is as follows. Sipé® monotonically
increasing, the orbits asymptote into the past towatds- —1 and into the future towards

Y, = +1. As in the above examples, the existence of such a monotonic function excludes
the possibility of periodic orbits in the four-dimensional phase space. Most orbits asymptote
into the past towards the line~ (for X, < 1/4/3), and into the future towards the lire'

(for X4 > —1/+/3). The range of values fdr, corresponding to stable solutions is given by

h, > —% forthose orL.* andh, < %forthose orl.~. The variabl&’, increases monotonically
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along orbits and this implies that iS dynamically significant at early and late times, but
dynamically insignificant at intermediate times. Conversely, we see that the curvature term,
central charge deficit and axion field are dynamically important only at intermediate times,
and are negligible at early and late times.

This concludes the qualitative analysis of the isotropic curvature string cosmologies with
NS-NS fields. In the next section, we consider the effect on the dynamics of introducing a
non-trivial Ay.

4. Non-zero cosmological constamy (A = 0)
We begin this section by defining new variables

d 1 d -

_ —(§0+3a) _ 2 _ / 7 _ 7((p+3a)
— =e2 —, N =687, =¢, h=ao, K = Ke ,
dr dr p v=¢ *

(4.1)

where a prime denotes differentiation with respect to the new time coordifate,
Equations (2.11)—(2.16) may then be written as the system of ODESs:

h==3n+ihy — K — 1An + 1pe @3 (4.2)
U= 32— S+ AN + 3K — Bpe 43)
N'= (¥ —3m)N (4.4)
K' =—( +50)K (4.5)
o' = —6hp (4.6)
3n? — Y2+ N — 3K + Ay + 3pe” %) = 0. (4.7)

The variableo may be eliminated due to the constraint equation (2.16). It also proves
convenient to further define the set of variables

_ V3 _Y =X

T e R (4.8)
_ 43K Y d_.d

=5 ez dar ~ °dc’

where thet signs ensure that > 0 andA > 0. The variable: is defined in each of the
following four subsections by
e Ay >0
x K > 0: £2 = 3K + 2 (section 4.1),
x K < 0: €2 = 2 (section 4.2),
e Ay <O
x K > 0:£2=3K +y?— Ay (section 4.3),
x K < 0:£2 =2 — Ay (section 4.4).

With these definitions, all variables are boundee; Qu?, x2, v, ¢, A} < 1, and equation (4.7)
now reads

2pE e W =2 r A —pf—v > 0. (4.9)

Our overall approach in this section is identical to that of section 3 and we refer the reader to
the discussion immediately after equation (3.2) for the general outline adopted.
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4.1. Thecasé\y >0, K >0
For K > 0, equation (4.7) is written in the new variables as
O<H§+U1+)\1<l, §1+Xf=l, (410)

where the ‘+’ sign is chosen for bothand¢ in equation (4.8). For this case, the variable
H=1- X12 will be considered extraneous and the system (4.2)—(4.5) then reduces to the
four-dimensional system:

% = (1= nf—vi = 32) (V3+pa) - %3(1 —13) (1= x3) — V31, (4.11)
% = (1-x9) [N«i it %M + %M1X1:|, (4.12)
% = “1[%#01(1 —x) *2xa(l = pf - - %Al)}, (4.13)
% = )‘1[%#1(5 —2x§) + xa(1 — 2uf — 20 — M)]. (4.14)

The invariant setg2 +v;+4; =1 (0 = 0), x? =1 (K =0),v;, =0 (N =0)andr; = 0
(Am = 0) define the boundaries to the phase space. The equilibrium points and their respective
eigenvalues (denoted iy are given by

L*: x1==+1, ui+v =1, A =0;
(A1, A2, A3, Ag) = <0, :Fi[*/éi pa), \/§|:/L1 F ii|, :Fz\/é[i + M})
V3 V3 V3
(4.15)
1 16
S =F—, =41, =0, M= =—:
1 M1 $@ X1 V1 1 27

(A A2, A3, Aa) = (F3[1+i3v231), F3[1—i1v231), 5, £3).  (4.16)

From the eigenvalues, we deduce théts a late-time attractor fqu? < 3, and that.~ is an
early-time repeller fop.? < 1. In both casesy? = 1 and therefor& = 0 (¢1 = 0). The ‘+'

solution of (A.1) is a sink foh? < % and the =’ solution of (A.1) is a source fok, < %. The
pointsSf are saddle points on the boundary of the phase space and correspond to the exact
solution (A.5).

4.1.1. The invariant seK = 0for Ay > 0.  This invariant set was studied in paper Il

by employing dynamical variables equivalent {{o1, A1, v1}, and we now summarize the
important features of the model. For spatially isotropic solutions confined to the invariant
setv; = 0, most trajectories evolve from the equilibrium poltt (labelled F’ in paper I)
located at(u1, v1, A1) = (—1/+/27,0, 32 (corresponding to the-*’ solution (A.5)) and are
future asymptotic to a heteroclinic orbit. There are two saddle equilibrium pdintsdSs,

which are the endpoints of the lide"; S; is given by the -’ branch of equation (A.1) with

h, = —1/+/3 andS, corresponds ta, = 1/+/3. There are also the single boundary orbits in
the invariant setg; = 0, corresponding ta\y = 0 andi; + u2 = 1 (constant axion field).

An orbit spends the majority of its time in the neighbourhood$:céind S> and shadows the
respective boundary orbits as it rapidly moves between the two saddles. Progressively more
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Figure 7. Phase portrait for the system (4.11)—(4.13) &g > 0 with p # 0 andK = 0. Note
that the labelL* refers to dine of equilibrium points. In this phase spage;> 0 is assumed. See
also the caption to figure 1.

time is spent near the saddles for each completed cycle, and the dynamics is therefore not
periodic.

An anisotropic contributior{v; # 0) does not introduce new sources into the system
and the pointS] is still the only source. Figure 7 depicts the full three-dimensional space.
Equation (4.13) implies that; is a monotonically increasing function and consequently the
orbits are repelled fron$] and spiral out monotonically. The general behaviour for most
trajectories in this phase space is to evolve away from the equilibrium §pirsipiral about
the linep; = —1/v/27,v1 = 21 — £2) and eventually asymptote towards the libefor
Mf < % These trajectories were discussed in detail in paper Il.

4.1.2. The invariant sep = 0for Ay > 0, K > 0. For the invariant sep = 0, the
system (4.11)—(4.14) reduces to the three dimendjensy1, vi} (A1 = 1 — u2 — vq). In this
invariant setu is a monotonically decreasing function, and so the possibility of periodic orbits

is excluded. The only equilibrium points are the line$ with the first three eigenvalues

in equation (4.15), and therefore the early- and late-time attractors are theLliné®r

p1 > —1/+/3,h, > —3)andL* (for uy < 1/+/3,h, < 3). The curvature and cosmological
constant are only dynamically significant at intermediate times and the phase space is depicted
in figure 8.
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Figure 8. Phase portrait for the system (4.11)—(4.13) fq > 0 with p = 0O field andK > 0.
Note thatL* and L~ representinesof equilibrium points. See also the caption to figure 1.

4.1.3. Qualitative analysis of the four-dimensional systeifhe qualitative dynamics in the
full four-dimensional phase space is as follows. The funcfign’*(1— 2 — vy — 11)Y62; 2
increases monotonically and so there can be no periodic orbits. The only past attractors
belong to the lineL~ for u2 < % (h? < %) and the only future attractors belong to the
line L* for u2 < % (h?2 < %). Both linesL* lie in both of the invariant setp = 0
andK = 0, which is consistent with the analysis of equation (2.21). This implies that the
spatial curvature, cosmological constant and axion field are only dynamically significant at
intermediate times.

For orbits in the four-dimensional phase space, the complex eigenvalues of the saddle point
Sf suggest that the heteroclinic sequences may exist in the four-dimensional set. Indeed, those
orbits which asymptote to thHé = O invariant setlogenerically end in a heteroclinic sequence,
interpolated between two equilibrium points representing two dilaton—vacuum solutions, as
discussed in section 4.1.1. However, for those orbits which asymptote towards=th8
invariant set, there are no heteroclinic sequences (as is evident from figure 8).
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4.2. Thecaséy >0, K <0
For K < 0, equation (4.7) is written in the new variables as
0<M§+V2+§2+)\2<1, X%Zl» (4.17)

where the ‘+’ sign fof. and the =’ sign for ¢ have been chosen in equation (4.8). For this case,
we explicitly chooseg(, = +1, asy, = —1 corresponds to a time reversal of equations (4.2)—
(4.6). The system (4.2)—(4.5) then reduces to the four-dimensional system:

d
W2 (1 3o ) (VB ) — VB(ha+ 200). (@18
% =2vp(1— b — v — 312), (4.19)
deo 2 1 1

_ 5 ot g 4.20
ar L2 (Mz V2 5h2 ﬁﬂz), ( )
dx
d_: = 22(1— 212 — 2v; — hp + /3p12). (4.21)

The invariant setg3 + v, + &+ A2 = 1 (0 = 0), & = 0 (K = 0),v; = 0 (N = 0) and
A1 = 0 (Am = 0) define the boundaries to the phase space. The equilibrium points and their
respective eigenvalues (denoted)yare given by

1

S*: M2=—ﬁ, CZZ%, A2 =0, v2 =0

(M1, A2, hg, hg) = 3(2,4, -2, 4) (4.22)
N: 2 = —%/3, vz =0, r =3, Ay = 7

(M, Ao, ha, ha) = 2(1+iV2,1-1v/2,4,2) (4.23)
L*: ,LL%+U2=1,§2=O,)L2=O;

()"17 )"27 )"37 )"4) = (0’ _i[ﬂz + \/§]9 \/§|:l/«2 - i]’ _2\/§[M2 + i])

V3 V3 V3
(4.24)

From the eigenvalues, it is clear that is a late-time attractor for3 < % (h? < %). The
point N inside the phase space is the early-time attractor for the system, and represents the
curvature-driven solution (A.6). The saddle polfit corresponds to the—’ branch of the

Milne solution (A.2).

4.2.1. The invariant sep = 0 for Ayy > 0, K < 0. For this invariant set, the
four-dimensional system (4.18)—(4.21) reduces to a three-dimensional system involving the
coordinateg o, vo, Ao} (o = 1 — ,u% — vy — A2). The equilibrium points are the same as

for the full four-dimensional set, but the eigenvalues are nbw X, A3). The variablev

is a monotonically increasing function, the existence of which eliminates the possibility of
recurrent orbits. Thus, the generic behaviour of this model is for solutions to asymptote into
the past towards the curvature-dominated solution (A.6), represented by theévpa@int to

the future towards the ling* for u, < 1/+/3 (h. < 1). Figure 9 depicts this phase space.
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Figure 9. Phase portrait for the system (4.18) and (4.19)gr > 0 with p = 0 andK < 0. Note
thatL* represents kine of equilibrium points. In this phase spage> 0 is assumed. See also the
caption to figure 1.

4.2.2. Qualitative analysis of the four-dimensional systeffihe invariant sei = 0 was
described in section 4.1.1 (see figure 7). In the full four-dimensional set, the @dmthe
early-time attractor, and* is the late-time attractor fqu% < % (h? < 5—1)). The pointN lies

in the invariant sep = 0 andL* lies in both of the invariant sefs = 0 andK = 0. This is
consistent with the analysis of equation (2.21). We seeitheta monotonically increasing
function, and so there are no recurrent or periodic orbits. Furthermore, sirinereases
monotonically, the shear in the model is initially dynamically trivial, but becomes significant
asymptotically into the future. The axion field and cosmological constant are only dynamically
important at intermediate times and do not play a role in the early- and late-time behaviour
of the cosmologies. The curvature term is dynamically significant at early and intermediate
times, but becomes dynamically trivial at late times.

Orbits which asymptote into the future towards tkie= 0 invariant set generically end
in a heteroclinic sequence, as described in section 4.1.1 and depicted in figure 7. However,
such a sequence does not occur for orbits which asymptote into the future towapds-the
invariant set. Indeed, by examining the eigenvalues of the equilibrium points of the four-
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dimensional system, there do not seem to be heteroclinic sequences outsideKofthe

invariant set.

4.3. ThecaseAy <0, K >0

For completeness we now consider the cases whgre< 0. WhenK > 0, equation (4.7) is
written in terms of the new variables as

0< ui+v3 <1, X2+i3+rz=1, (4.25)
where the =’ sign for A and the ‘+' sign for¢ have been chosen in equation (4.8). The

variableis is chosen as the extraneous variable and the system (4.2)—(4.5) then reduces to the
four-dimensional system:

d

= (1= 13— v9) (VB +pats) + 3VE(L— ) (1 4 - §2a). (4.26)
d

= = —3V3uana(1— - )] — 31— xd) (1 - 25— 20) + $a (4.27)
d

o = val2xa(1 = 3 = va) = VBua(1 - i - 5¢5)) (4.28)
d 1

The invariant seta3+vs = 1, x2+¢3 = 1,v3 = 0 andgz = 0 define the boundary to the phase
space. The equilibrium sets and their corresponding eigenvalues (denctedreygiven by

L*: X3 = £1, ,bL% +v3=1, 3 =0;
(A, A2, A3, Aa) = <0, :Fi[\/éi s, \/§|:M3 F ii|
V3 V3
1
_ 2@[ N _D 4.30
uat (4.30)
1
R: X3=—73, ns =—1, v3 =0, i3 =0;
(AAAA)—1(12610) (4.312)
1, A2, A3, AM4) — \/§ s &5 O, 5 .
A ! 1 0 g 0
N = —, =1, Va = 5 = ’
X3 «/§ "3 3 3
(A1, A2, A3, Ag) = 1(12610) (4.32)
1, 25 35 4) — \/é ] ) £ . .

Here, there are two early-time attractors. The first is the pBjmepresenting the ‘+' branch
of the constant axion, spatially isotropic solution (A.7), where 0. The second is the line
L~ for u3 < % (h? < 2). Likewise, there are two late-time attractors: these are the point
representing the-*’ solution of equation (A.7), where > 0, and the lineL* for u3 < %
(h% < 3).
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Figure 10. Phase portrait for the system (4.26)—(4.29) 4q5 < O with p # 0 andK = 0. Note
that the labeld.* and L~ refer tolinesof equilibrium points. See also the caption to figure 1.

4.3.1. The invariant sek = 0for Ay, < 0.  In paper I, this invariant set was examined
using variables which are the samdas, xz, v3}. There itwas shown that; is monotonically
increasing, so that most trajectories in this phase space represent bouncing cosmologies which
are initially contracting. Most trajectories asymptote into the past towards dither to R

(see above). To the future, most orbits asymptote towards dither A. Figure 10 depicts

this three-dimensional phase space.

4.3.2. The invariant sep = 0 for Ay, < 0, K > 0. For this invariant set, the
four-dimensional system (4.26)—(4.29) reduces to a three-dimensional system involving the
coordinates{us, x3, {3} (vs = 1 — Mg). The equilibrium points are the same as the full
four-dimensional set, but with eigenvalues (1,2, A3), and so the lineL.~ is a source for

nz > —1/4/3 (b, > —3%) and the lineL* is a sink forus < 1/+/3 (1, < 3). The function
x3/+/v3 is monotonically increasing, and so there are no recurring or periodic orbits. Hence,
solutions generically asymptote into the past towdrdsor R and into the future towards*

orA.

4.3.3. Qualitative analysis of the four-dimensional systeniThe function (xz +
(1/+/3)113)//v3 is monotonically increasing, and so there are no recurring or periodic orbits
in the full four-dimensional set. The early-time attractors are thellinéor ;3 < % (h? < %)

and the pointR. The late-time attractors are the liéi¢ for u3 < % (h? < %) and the point
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S

Figure 11. Phase portrait for the system (4.26)—(4.29) 4q5 < O with p = 0 andK > 0. Note
thatL* and L~ represenltinesof equilibrium points. See also the caption to figure 1.

A. All of these attractors lie in both of the invariant spts= 0 andK = 0 and the axion field

and curvature term are dynamically significant only at intermediate times. For early and late
times, the cosmological constant is dynamically important only when the shear is dynamically
trivial (e.g. the pointsk andA) and vice versa (e.g. the linés").

4.4. Thecas&A\y <0,K <0
For this case, equation (4.7) is written in terms of the new variables as

0< pui+va+e <1, XZ+ha=1, (4.33)

where the -’ sign for bothA and¢ has been chosen in equation (4.8). The variabls chosen
as the extraneous variable and the system (4.2)—(4.5) then reduces to the four-dimensional
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system:
Yt (1 (B )+ P D) ) ot (439
Y 31— )1 20F ~ 204+ VBuaal. (4.35)
O vaf2xe(1— 15— ve) — VBua(1— x)]. (4.36)
% _ _Q[Zm(ug +ug) + %M(s _ 3;@)}_ (4.37)

The invariant setg2+v4+¢4 = 1, x2 = 1,v4 = 0 andg4 = 0 define the boundary to the phase
space. The equilibrium sets and their corresponding eigenvalues (denctgdreygiven by

L= Xa = %1, pi+ve=1, ta=0;
(A1, A2, A3, Ag) = <0, :Fi[\/éi ), \/§|:M4 F i}
V3 V3
1
- N:'a[ + —D 4.38
Hat =2 (4.38)
1
R: X4=_737 M4=_17 U4:0, §4=O;
1
(A1, A2, A3, A1) = —(1, 2, 6, 10), 4.39
1, A2, A3, Agq NE ( )
A: 1 1 0 Z 0
. = —, =1, Vg = , = 7
X4 «/§ Ha 4 4
1
()\'17 )\'27 )\'37 )\'4) = _73(15 27 65 10)5 (440)
S*: x4 ==£1, M4=:F—l, va =0, §4=%,
V3
(A1, A2, A3, ha) = 5(FL £1,42,0). (4.41)

As in the previous case, there are two early-time attractors: the Roémid the lineL~ for
uj < 3 (h? < 3). Likewise, there are two late-time attractors: the pdireind the lineL* for
ui <3 (h?<9).

4.4.1. The invariant sep = 0 for Ay < 0, K < 0. For this invariant set, the
four-dimensional system (4.34)—(4.37) reduces to a three-dimensional system involving the
coordinateq g, x4, va} (L3 = 1 — Mi — 14). The equilibrium points are the same as the full
four-dimensional set, and the eigenvalues aie X, A3). The difference is that the ling* is

a sink forug < 1/+/3 and the linel.~ is a source fopy > —1/+/3. The functiorua//vs is
monotonically increasing, and so periodic orbits cannot occur. Hence, solutions generically
asymptote into the past towards the ‘+’ branch of equation (A.1):for —%, or the '+’
solution of equation (A.7). Into the future, solutions asymptote towards eitherthganch

of equation (A.1) for, < % or to the —’ solution of equation (A.7). Figure 12 depicts this
phase space.
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Figure 12. Phase portrait for the system (4.34)—(4.37) 4q5 < O with p = 0 andK < 0. Note
thatL* and L~ representine of equilibrium points. See also the caption to figure 1.

4.4.2. Qualitative analysis of the four-dimensional systerfihe invariant setk = 0 is
discussed in section 4.3.1 (see figure 10). The fungtigh/v4 is monotonically increasing,

and so there are no recurring or periodic orbits. The asymptotic behaviour is identical to that
described in section 4.3.3.

5. Discussion

In this paper, we have presented a complete qualitative analysis for the isotropic curvature
string cosmologies derived from the effective action (2.10) in the two cases where either
A = 0or Ay = 0 (the cases where both terms are non-zero is discussed in [24]). This was
made possible by compactifying the phase space in terms of suitably defined variables. When
Am = 0, equation (2.10) represents the action for the NS—NS fields that arise in both the type Il
and heterotic string theories when an arbitrary central charge deficit is present. We identified
the cosmological constamty with terms that arise in the RR sector of the massive type 1A
supergravity theory when appropriate conditions apply.
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The subse = 0 corresponds to the class of spatially isotropic FRW universes with
arbitrary spatial curvature. In the positively curved case, we have extended the work of Easther
et al[7], who performed a perturbation analysis on the static, closed FRW model to show that
it was a late-time attractor. More generally, the models we have considered represent Bianchi
type I, V and IX universes.

For each case, we have established the existence of monotonic functions which precludes
the existence of recurrent or periodic orbits. Consequently, the early- and late-time behaviour
of these models can be determined by analysing the nature of the equilibrium points/lines of the
system. In all cases, the spatially flat dilaton—vacuum solutichsgiven by equation (A.1),
act as either early- or late-time attractors and, in many cases, act as both. Because these
solutions lie in both they = 0 andK = 0 invariant sets and contain neither a central charge
deficit nor a non-zera ), contribution, we may conclude that the shear and dilaton fields are
dynamically dominant asymptotically. Furthermore, with the exception ofthe0, K > 0
case, all early- and late-time attracting sets lie in eitheptke 0 invariant set or th& = 0
invariant set, and a majority of these sets lie in both.

Thus, we see a generic feature in which the curvature terms and the axion field are
dynamically significant at intermediate times and are asymptotically negligible at early and
late times. Theexceptionto this generic behaviour is the > 0, K > 0 case, where the
generalized linear dilaton-vacuum solution (A.3), in which neither 0 nor K = 0, acts
both as a repeller (fap < 0) and as an attractor (fer > 0). In these solutions, the variables
P andK are proportional to the central charge defigit, Note that asymptotically = 0 (and
B = 0) and hence these models are static.

When A < 0, the central charge deficit is dynamically significant only at intermediate
times, and is asymptotically negligible at early and late times. In fact, the only repelling and
attracting sets in this instance are the dilaton—vacuum solutions. \WhenO, the central
charge deficit can be dynamically significant at both early and late times, and the corresponding
solution is the generalized linear dilaton—vacuum solution (A.3), represented by tHg line
WhenK > 0, these solutions can be repelling € 0) and attracting{ > 0). WhenkK < 0,
the endpoint of this lineC (representing equation (A.4)) is a repeller.

WhenAy > 0, the cosmological constant may play a significant role in the early- and
late-time dynamics. For instance, although in the four-dimensional sets there are no repelling
or attracting equilibrium points in whiclAy, is dynamically significant, we have found that
the orbits which are attracted to ttke= 0 invariant set end in a heteroclinic sequence which
interpolates between two dilaton—vacuum solutions (see section 4.1.1, figure 7 and paper II).
During this interpolation, the orbits repeatedly spend time in a region of phase space in which
Aw is dynamically significant (the regio > 0 in figure 7), although most time is spent
near the dilaton—vacuum saddle points wh&ggis dynamically negligible. When, < 0,
the cosmological constant can be dynamically significant at both early and late times, since
solutions typically asymptote to the solution (A.7), where the shear and axion field are static.
For the repelling and attracting sets of thg, < 0 cases, the shear term is only dynamically
significant when the cosmological constant@d, and vice versa.

The parameted measures the degree of anisotropy in the models. If we define
isotropization by the conditiog — 0 [25, 26], then we note that in general# 0 at the
equilibrium points on the lind*. Therefore, solutions asymptoting towards the sinks on
these lines do not isotropize to the future. At all other equilibrium points, howgwerp and
thecorresponding appropriate string cosmologies therefore ‘isotropizéis is an important
result and a similar situation occurs in the time-reverse models. On the other hand, the question
of isotropization of string cosmologies in a more general context remains an open question.
Note that the shear in the models that we have discussed is essentially of Bianchi type I. In
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general relativity with a perfect fluid, itis known that Bianchi type | models isotropize, whereas
in general spatially homogeneous models theydidsotropize [25, 26].

For the equilibrium points corresponding to the sinks on theflihgd? o« ¢2(p = K = 0),
and so the energy densities of the modulus and dilaton fields are proportional to one another.
Hence, the corresponding dilaton—vacuum solutions are ‘matter scaling’ string cosmology
solutions, which act as local attractors, similar to the matter scaling solutions in general
relativistic scalar field cosmologies [27]. Finally, for every equilibrium point within these
phase spaces, the scale factor of the corresponding exact solution is a power-law function of
cosmic time, and therefore all of the corresponding exact solutions are self-similar [28].

The cases in whiclh < 0 are related to a time reversal of the models discussed in the text.
We have not explicitly considered these models here; however, the conclusions concerning
isotropization are similar although the details of these models may be different (e.g. the role
of sources and sinks can be interchanged).

In conclusion, therefore, we have established the qualitative properties of all the isotropic
curvature string models discussed in the text by finding appropriate monotonic functions.
Typically, the curvature term is dynamically significant only at intermediate tiames is
asymptotically negligible. There are only two exceptions to this. The first corresponds to the
case{A > 0, K > 0}, where the generalized linear dilaton—-vacuum attractors and repellers
have a non-negligible curvature. The second case igthe> 0, K < 0} model in which the
repellerN represents the curvature-driven solution (A.6). Finally, we note that whers O
there exist heteroclinic sequences in the invariankset 0. This implies that the qualitative
behaviour associated with heteroclinic sequences is only valid for solutions which approach
K =0.
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Appendix. Equilibrium points

In this appendix, we present the analytical solutions to equations (2.11)—(2.16) that represent
all of the equilibrium points that arise in this paper.

The ‘dilaton—vacuum’ solutions correspond to solutions where the axion field is constant
and cosmological constants vanich = Ay = o = 0). In the spatially flat casek = 0),
they are power laws:

a = ali|,

ed) — e¢*|t|i3h*7l,

e = |y eV A-3D/6, (A.1)
o = 0y,

k=0,

where{a,, ©., 0., B«, h,} are constants, = € is the averaged scale factor of the universe, the
=+ sign corresponds to the signoénde = +1. These solutions have a curvature singularity
atr = 0. Note that the shifted dilaton field (2.17) satisfies- 0 for+ < 0 andg¢ < O for

t > 0. The ~’ branch of equation (A.1) corresponds to the linkthroughout this paper and
the ‘+’ branch corresponds to the lide .
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Another solution which appears when bath= Ay, = 0 ando = 0 is the Milne form of
flat space:

a = a, (1),

¢ =,,

B = Bs, (A.2)
0O = Oy,

k = —af,

where{a,, ®., B, 0.} are constants. The" sign corresponds to the signofThese solutions
are labelledS* throughout the paper (not& corresponds to < 0 andS~ corresponds to
t > 0) and arise as saddle points.

There is a line of equilibrium points that arises when the central charge deficig
included in the action (2.10). This class of solutions has the form

a:a*7
S =, + 6A t
I i
" [2(1 —n?) ox ® [ 6A .
0 =0, _— —P,—n )
3n2 P 2+n?
1—n? 2
= 2+n2Aa*,

wheren € [—1, 1]. The solution is static, but has non-trivial spatial curvature, dilaton and
axion fields. These solutions are represented by thdliria section 3.1. In that section they
represent past attractors fore (0, 1] and future attractors for € [—1, 0). These solutions
were found in [7] forp’' > 0, where, by employing a perturbation analysis, they were found to
be late-time attractors.

The endpoints of the liné; correspond tm = +1. These represent spatially flat and
isotropic solutions known as the ‘linear dilaton—vacuum’ solutions [23]. They are described

by

a = day,

® = D, +v/2A1,

B = B.. (A.4)
0 =0y,

k=0,

where{a,, ., B«, 0.} are constants. The '+’ solution is represented by the equilibrium point
C in section 3.2.

We now consider the cosmologies whexe= 0 in the action (2.10). A spatially flat
solution found previously in paper Il is given by

a = a.[3V/3Amlr]"

® = &, — In[£3An?]

B = P (A.5)
o =0t %6«/1—5AMZZ

k=0,
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where {a,, ®., B., 0.} are arbitrary constants and time is defined over the interval 0
(¢ > 0) for the equilibrium pointS; ands > 0 (¢ < 0) for the equilibrium pointS; in
section 4.1.

There also exists a spatially curved, isotropic solution with a constant axion field. It is
given by

a = 3a.~/Awltl,

® = —In[1Awt?],

B = B (A.6)
0 =04,

k= —%AMaf

where{a,, B, 0.} are integration constants. The solution fox O is represented by the
equilibrium pointN in section 4.2.
For negativeA, there are also the solutions

as
a= ,
V2t
® = &, —In[—2Aur?],
B = .. (A.7)
o = G*a
k=0,

where{a,, ®,, B4, 0.} are constants. The sign corresponds to the signoénd ‘+’ solution
corresponds to the repelling equilibrium poiRtin section 4.4, whereas the-* solution
corresponds to the attracting equilibrium paiin that section.
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