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Abstract. A complete qualitative study of the dynamics of string cosmologies is presented for
the class of isotopic curvature universes. These models are of Bianchi types I, V and IX and
reduce to the general class of Friedmann–Robertson–Walker universes in the limit of vanishing
shear isotropy. A non-trivial 2-form potential and cosmological constant terms are included in
the system. In general, the 2-form potential and spatial curvature terms are only dynamically
important at intermediate stages of the evolution. In many of the models, the cosmological constant
is important asymptotically and anisotropy becomes dynamically negligible. There also exist
bouncing cosmologies.

PACS numbers: 9880C, 0450, 9880H

1. Introduction

One of the strongest constraints that a unified theory of the fundamental interactions must
satisfy is that it should lead to realistic cosmological models. There are known to be five
consistent perturbative superstring theories in ten dimensions (see, e.g., [1]). The type II and
heterotic theories each contain a Neveu–Schwarz/Neveu–Schwarz (NS–NS) sector of bosonic
massless excitations that includes a scalar dilaton field, a graviton and an antisymmetric 2-
form potential. The interactions between these fields lead to significant deviations from the
standard, hot big bang model based on conventional Einstein gravity [2] and a study of the
cosmological consequences of superstring theory is therefore important.

In string cosmology, the dynamics of the universe below the string scale is determined
by the effective supergravity actions. The NS–NS string cosmologies contain the non-trivial
fields discussed above. Recently ([3], hereafter referred to as paper I), a complete qualitative
analysis for the spatially flat Friedmann–Robertson–Walker (FRW) and axisymmetric Bianchi
type I NS–NS string cosmologies was presented. A central charge deficit was also included
and found to have significant effects on the nature of the asymptotic dynamics. This study
unified and extended previous qualitative analyses of this system [5–7].

In [4] (hereafter referred to as paper II), a phenomenological cosmological constant was
introduced into the string frame effective action in such a way that it was not coupled directly
to the dilaton field. Such a term yields valuable insight into the dynamics of more general
string models containing non-trivial Ramond–Ramond (RR) fields. The interplay between
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such a cosmological constant and the 2-form potential had not been considered previously. It
was found that the interactions led to heteroclinic orbits in the phase space, where the universe
underwent a series of oscillations between expanding and contracting phases.

The purpose of the present paper is to extend the work of [3, 4] to both isotropic and
anisotropic cosmologies containing spatial curvature terms. In particular, we consider the
class of ‘isotropic curvature’ universes [8, 9]. These are spatially homogeneous but contain
non-trivial curvature and anisotropy. The characteristic feature of these models is that the
three-dimensional Ricci curvature tensor is isotropic. In other words,(3)Rij is proportional to
kδij on the spatial hypersurfaces and these surfaces therefore have constant curvaturek [8].
The class of isotropic curvature universes contains the Bianchi type I (k = 0) and V (k < 0)
models and a special case of the Bianchi type IX (k > 0) models [9].

The four-dimensional line element of these cosmologies is given by [8, 9]

ds2 = −dt2 + e2α(t)
[
(ω1)2 + e−2

√
3β(t)(ω2)2 + e2

√
3β(t)(ω3)2

]
, (1.1)

where the 1-forms{ω1, ω2, ω3} are given in [8, 9]. The spatial hypersurfaces,t = constant, are
the surfaces of homogeneity. The variable,α, parametrizes the effective spatial volume of the
universe andβ determines the level of anisotropy. We refer to it as the shear parameter.
In essence, the isotropic curvature models can be regarded as the simplest anisotropic
generalizations of the flat(k = 0), open(k < 0) and closed(k > 0) FRW universes,
respectively. The isotropic models are recovered whenβ̇ = 0.

The paper is organized as follows. In section 2, we summarize the form of the effective
actions we consider. The cosmological field equations are derived and the general asymptotic
behaviour of the 2-form potential and spatial curvature is discussed. The global qualitative
dynamics for the different classes of models is determined in sections 3 and 4. We summarize
and conclude our results in section 5. The exact solutions corresponding to the equilibrium
points that arise in the analysis are presented in an appendix.

2. Cosmological field equations

2.1. String effective action

The NS–NS sector of massless bosonic excitations is common to both the type II and heterotic
superstring theories. The four-dimensional, string effective action for the NS–NS fields can
be written as [14]

S =
∫

d4x
√−g e−8

[
R + (∇8)2 − 1

12HµνλH
µνλ − 23

]
, (2.1)

where the string coupling,g2
s ≡ e8, is determined by the value of the dilaton field,8, the

spacetime manifold has metric,gµν , and Ricci curvature,R, the antisymmetric 2-form,Bµν ,
has a field strengthHµνλ ≡ ∂[µBνλ] andg ≡ detgµν . The central charge deficit of the theory
is denoted by the constant,3. The value of this term depends on the conformal field theory
that is coupled to the string and it can be positive or negative. Such a term may also arise from
the compactification of higher-dimensional form fields or non-perturbative corrections to the
self-interaction of the dilaton field [15].

The 3-formHµνλ is dual to a 1-form in four dimensions and the field equation forBµν is
solved by the ansatz [16]

Hµνλ ≡ e8εµνλκ∇κσ, (2.2)

whereεµνλκ is the covariantly constant 4-form. The scalarσ may be interpreted as a pseudo-
scalar ‘axion’ field. The Bianchi identity,∂[µHνλκ] ≡ 0, is then solved by reinterpreting this
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constraint as the field equation forσ and this latter equation can be derived from the dual
effective action [16]

S =
∫

d4x
√−g e−8

[
R + (∇8)2 − 1

2e28(∇σ)2 − 23
]
. (2.3)

We establish the dynamics of cosmological models derived from equation (2.3) in section 3.
In paper II, the action

S =
∫

d4x
√−g{e−8[R + (∇8)2 − 1

2e28(∇σ)2]−3M
}

(2.4)

was considered, where3M was interpreted as a phenomenological cosmological constant
arising from the interaction potential of a slowly rolling scalar field. We now proceed to discuss
this action within the context of the massive type IIA supergravity theory in ten dimensions
[10]. This theory represents the low-energy limit of the type IIA superstring and has been
the subject of renewed interest recently following the advances that have been made in our
understanding of the non-perturbative features of string theory [12, 13].

In this theory, the NS–NS 2-form potential becomes massive. In the absence of such a
field, the action is given in the string frame by [12]

S =
∫

d10x
√−g10

{
e−ς

[
R10 + (∇ς)2]− 1

4FABF
AB − 1

48FABCDF
ABCD − 1

2m
2
}
, (2.5)

whereς represents the ten-dimensional dilaton field,m2 is the cosmological constant and
A = (0, 1, . . . ,9), etc. The antisymmetric field strengthsFAB andFABCD for the 1-form and
3-form potentials represent RR degrees of freedom because they do not couple directly to the
dilaton field [1]. The massless theory is recovered whenm = 0.

Maharana and Singh [11] have employed the Kaluza–Klein technique [18, 19] to
compactify the ten-dimensional theory (2.5) on a six-dimensional torus. We consider a
truncation of the dimensionally reduced four-dimensional action, where we include only the
components of the 4-form on the four-dimensional external spacetime. We therefore neglect
the moduli fields arising from the compactification of the form fields and the gauge fields
originating from the higher-dimensional metric. The effective four-dimensional action is then
given by

S =
∫

d4x
√−g{e−8[R + (∇8)2 − 6(∇γ )2] − 1

48e6γ FµνλκF
µνλκ − 1

2m
2e6γ

}
, (2.6)

where the four-dimensional dilaton,8, is defined in terms of the ten-dimensional dilaton by
8 ≡ ς − 6γ andγ parametrizes the volume of the torus.

The Bianchi identity for the 3-form potential is trivially satisfied in four dimensions and
its field equation is solved by the ansatzFµνλκ = Qe−γ εµνλκ , whereQ is an arbitrary constant
andεµνλκ is the covariantly constant 4-form. Applying this duality, together with the conformal
transformation

g̃µν = �2gµν, �2 ≡ e−8 (2.7)

implies that the effective four-dimensional action may be expressed in the Einstein frame as

S =
∫

d4x
√
−g̃[R̃ − 1

2(∇̃8)2 − 1
2(∇̃y)2 − 1

2Q
2e28−√3y − 1

2m
2e28+

√
3y
]
, (2.8)

wherey ≡ √12γ represents a rescaled modulus field.
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Without loss of generality, one may perform linear translations on the dilaton and modulus
fields such that the parametersQ andm become effectively equal. Thus, action (2.8) may be
written in the form

S =
∫

d4x
√
−g̃[R̃ − 1

2(∇̃8)2 − 1
2(∇̃y)2 −3Me28 cosh

(√
3y
)]
, (2.9)

where3M is a positive-definite constant. It follows, therefore, that the 4-form and ten-
dimensional mass parameter together provide an effective potential for the modulus field
with a global minimum located aty = 0. Consequently, the internal space can become
stabilized for this specific compactification and a consistent truncation of the effective action
is therefore given by specifyingy = 0 in equation (2.9). Applying the inverse of the conformal
transformation (2.7) then implies that the effective string frame action is given by equation (2.4)
when the axion field is trivial. Thus, a truncated form of equation (2.4) is relevant to the type IIA
theory. The dynamics of these models is considered in section 4.

For the purposes of deriving the cosmological field equations from the effective actions
(2.3) and (2.4), we combine these two expressions into the single action

S =
∫

d4x
√−g{e−8[R + (∇8)2 − 1

2e28(∇σ)2 − 23
]−3M

}
(2.10)

where it is understood that either3 or3M should be set to zero. We assume that all massless
degrees of freedom are constant on the surfaces of homogeneity,t = constant. The field
equations derived from action (2.10) for the isotropic curvature metric (1.1) are then given by

α̈ − α̇ϕ̇ − 1
2ρ + K̃ + 1

23Meϕ+3α = 0 (2.11)

2ϕ̈ − ϕ̇2 − 3α̇2 − 6β̇2 + 1
2ρ − 3K̃ + 23 = 0 (2.12)

β̈ − β̇ϕ̇ = 0 (2.13)

˙̃
K + 2α̇K̃ = 0 (2.14)

ρ̇ + 6α̇ρ = 0 (2.15)

together with the generalized Friedmann constraint equation

3α̇2 − ϕ̇2 + 6β̇2 + 1
2ρ − 3K̃ + 23 +3Meϕ+3α = 0, (2.16)

where

ϕ ≡ 8− 3α (2.17)

defines the ‘shifted’ dilaton field [2, 20],

ρ ≡ σ̇ 2e2ϕ+6α (2.18)

may be interpreted as the effective energy density of the pseudo-scalar axion field [6],

K̃ ≡ 2k exp(−2α) (2.19)

represents the spatial curvature term,α andβ are defined in equation (1.1), and a dot denotes
differentiation with respect to cosmic time,t .

The moduli fields that may also arise in the string effective action from the compactification
of higher dimensions have not been included in equation (2.1) and it is assumed, in particular,
that the internal dimensions are fixed. We emphasize, however, that in the NS–NS model
(3M = 0), one may readily include the dynamical effects of these extra dimensions in the case
of a toroidal compactification, where the internal space has the topologyT = S1×S1×· · ·×S1,
by reinterpreting the shear parameter,β, in the field equations (2.11)–(2.16) [3, 19]. Modulo
a trivial rescaling, the moduli fields,βm, that parametrize the radii of the circles,S1, have the
same functional form in the field equations as the shear term. These moduli may therefore be
combined with the shear by replacingβ2 with an expression of the form02 = β2 +

∑
β2
m.
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2.2. Asymptotic behaviour

Before concluding this section, we make some general remarks regarding the asymptotic
behaviour of the cosmological models discussed above.

It can be shown that the action (2.10) is invariant under a globalSL(2,R) transformation
acting on the dilaton and axion fields when the cosmological constants3 and3M vanish [16].
The symmetry becomes manifest in the conformally related Einstein frame (2.7) and may be
employed to generate a non-trivial axion field from a solution where such a field is trivial [21].
Solutions containing a dynamical axion field are known as ‘dilaton–axion’ cosmologies. The
constant axion solutions are referred to as ‘dilaton–vacuum’ solutions and are presented in
equations (A.1).

The functional form of the dilaton–axion cosmologies has been derived [21]. The general
feature exhibited by these models is that the axion field is dynamically important only for a
short time interval. The solutions asymptotically approach one of the dilaton–vacuum solutions
(A.1) in the high- and low-curvature regimes. The axion field also results in a lower bound
on the value of the dilaton field and therefore the string coupling. However, theSL(2,R)
symmetry is broken when either of the cosmological constants is present in the action (2.10)
[22] and analytical solutions are not known in this case, even in the isotropic limit(β̇ = 0).

In addition, the variables̃K andρ in equations (2.14) and (2.15) may, in general, be
combined to define the new variable

4 ≡ ρ − K̃
ρ + K̃

. (2.20)

This implies that equations (2.14) and (2.15) are equivalent to the evolution equation

4̇ = −2α̇(1−42). (2.21)

Hence,all of the equilibrium points occur either for ˙α = 0 or for42 = 1 and this implies that
eitherρ = 0 (4 = −1) or K̃ = 0 (4 = +1) asymptotically if ˙α 6= 0.

In general, equations (2.11)–(2.16) define a four-dimensional dynamical system.
(Although there are five ordinary differential equations (ODEs), equation (2.16) may be
employed to globally reduce the system by one dimension.) In the cases in which all of
the equilibrium points lie on42 = 1, the asymptotic properties of the string cosmologies can

Table 1. The equilibrium points/sets obtained in this paper are listed in the first column and
the location of the corresponding exact solutions is given in the second column. The equivalent
equilibrium points (with different notation) in papers I [3] and II [4] are listed in the appropriate
row.

This paper Equation Paper I [3] Paper II [4]

L± (S1, S2)a (A.1) L±, V , (R, A, S, S1, S2)a W ,W±, (Su,v , S1, S2)a

L1, (C)a (A.3), (A.4) (C)a —
S±1 (A.5) — F

R, A (A.7) — R, A
S± (A.2) — —
N (A.6) — —

a The equilibrium points in parentheses in the first row are just endpoints to the linesL±, V orW .
Similarly, equilibrium pointC in the second row is the endpoint for the lineL1 for Y1 = Y2 = 1.
(See the text for the definition ofYi .) The pointsR andA in the first row represent different
solutions to those represented by the pointsR andA in the fourth row. Also, in the third row, point
F corresponds to pointS−1 only.
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be determined from the dynamics in the three-dimensional setsρ = 0 or K̃ = 0. The latter
three-dimensional dynamical system was studied in papers I and II.

In view of this, we explicitly examine the three-dimensionalρ = 0 case in what follows.
The only case in which there exist equilibrium points with ˙α = 0 but42 6= 1 occurs in the NS–
NS case (3M = 0) in whichK̃ > 0 and3 > 0. We shall examine the full four-dimensional
system in this case, although the three-dimensional subsetρ = 0 still plays a principal role in
the asymptotic analysis.

All solutions represented by the equilibrium points that arise in this work are presented
in the appendix. Some of these points also arose in papers I and II, where they were labelled
differently. In table 1, we list all the equilibrium points obtained and unify the notation
employed in the different works.

3. Non-zero central charge deficit (ΛM = 0)

In this section we perform the qualitative analysis for the NS–NS string effective action (2.10)
with 3M = 0 for an arbitrary central charge deficit. Through equation (2.16), we eliminate
the variableρ from the field equations, and make the following definitions:

X ≡
√

3α̇

ξ
, Y ≡ ϕ̇

ξ
, Z ≡ 6β̇2

ξ2
,

U ≡ ±3K̃

ξ2
, V ≡ ±23

ξ2
,

d

dt
≡ ξ d

dT
.

(3.1)

The± signs in the definitions forU andV are to ensure thatU > 0 andV > 0 when necessary.
With these definitions, all variables are bounded such that 06 {X2, Y 2, Z,U, V } 6 1 and
equation (2.16) now reads

1
2ρξ

−2 = Y 2 ± U ∓ V −X2 − Z > 0. (3.2)

The variableξ is defined in each of the following four cases (the section in which they
occur is indicated in parentheses) by:

• 3 > 0
∗ K̃ > 0: ξ2 ≡ 3K̃ + ϕ̇2 (section 3.1),
∗ K̃ < 0: ξ2 ≡ ϕ̇2 (section 3.2),

• 3 < 0
∗ K̃ > 0: ξ2 ≡ 3K̃ + ϕ̇2 − 23 (section 3.3),
∗ K̃ < 0: ξ2 ≡ ϕ̇2 − 23 (section 3.4).

For example, consider3 > 0 with K̃ > 0; for this caseY 2 +U = 1 and equation (3.2) reads
1
2ρξ

−2 = 1− V −X2 − Z > 0. (3.3)

Hence, we use{X,V,Z} as the phase space variables (see section 3.1 for details). We now
consider each of these cases in turn and introduce subscriptsi = (1, 2, 3, 4) to the variables
{X, Y,Z,U, V } to distinguish the different cases.

For each case, we will set up the four-dimensional dynamical system, followed by a
discussion of theK̃ = 0 invariant set as examined in paper I. Note that in section 3.2 the
K̃ = 0 case is identical to that presented in section 3.1 and is therefore omitted from that
section. Similarly, there will be nõK = 0 discussion in section 3.4 since it is discussed in
section 3.3. We will then examine theρ = 0 invariant set. As discussed in section 2.2, all
equilibrium points discussed below which have ˙α = 0 also have42 6= 1, and hence generically
the orbits asymptote towards the equilibrium points in one of the invariant setsρ = 0 orK̃ = 0.
The qualitative behaviour of the four-dimensional phase space in each case is then examined.
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3.1. The case3 > 0, K̃ > 0

We defineξ2 = ϕ̇2+3K̃ and utilize the positive signs forU1 andV1 as defined by equation (3.1).
From the generalized Friedmann equation we have that

06 X2
1 +Z1 + V1 6 1, Y 2

1 +U1 = 1, (3.4)

and therefore we may eliminateU1 (which is proportional toK̃), and consider the four-
dimensional system of ODEs for 06 {X2

1, Y
2
1 , Z1, V1} 6 1:

dX1

dT
= 1√

3

(
1−X2

1

)(
2 +Y 2

1

)−√3
(
Z1 + V1

)
+X1Y1

(
1−X2

1 − Z1
)
, (3.5)

dY1

dT
= (1− Y 2

1

)(
X2

1 +Z1 +
1√
3
X1Y1

)
, (3.6)

dZ1

dT
= 2Z1

[
Y1
(
1−X2

1 − Z1
)

+
1√
3
X1
(
1− Y 2

1

)]
, (3.7)

dV1

dT
= −2V1

[
Y1
(
X2

1 +Z1
)− 1√

3
X1
(
1− Y 2

1

)]
. (3.8)

The invariant setsY 2
1 = 1, X2

1 + Z1 + V1 = 1, Z1 = 0 andV1 = 0 define the boundary of
the phase space. The equilibrium sets and their corresponding eigenvalues (denoted byλ) are
given by

L±: Y1 = ±1, Z1 = 1−X2
1, V1 = 0;

(λ1, λ2, λ3, λ4) =
(
∓ 2√

3

[√
3±X1

]
,∓2, 0,−2

√
3

[
X1± 1√

3

])
, (3.9)

L1: X1 = 0, Z1 = 0, V1 = 1
3(2 +Y 2

1 );(
λ±, λ2, λ3

) = (1

2

[
Y1± 1√

3

√
19Y 2

1 − 16

]
, 2Y1, 0

)
. (3.10)

The zero eigenvalues arise because these are alllinesof equilibrium points. Here, the global
sources are the linesL1 (for Y1 > 0 or ϕ̇ > 0) andL− (for X1 < 1/

√
3). The global sinks are

the linesL1 (for Y1 < 0) andL+ (for X1 > −1/
√

3).
This case isdifferentfrom the other three cases to be considered in this section, since it

is the only one with the line of equilibrium points,L1, insidethe phase space. This line acts
as both sink and source, and corresponds to the exact static solution (A.3) which generalizes
the static ‘linear dilaton–vacuum’ solution (A.4) [23]. This solution was examined in [7] for
ϕ̇ > 0 and was shown by a perturbation analysis to be a late-time attractor.

The linesL± correspond to the spatially flat, dilaton–vacuum solutions (A.1). The
corresponding stable solutions are in the rangeh∗ > − 1

3 forL+ andh∗ < 1
3 forL−, respectively.

3.1.1. The invariant set̃K = 0 for3 > 0. This invariant set was studied in paper I, and the
variables{X1, Z1, ν ≡ 1−X2

1−Z1−V1} were used. It was found thatZ1 is amonotonically
increasingfunction (as it is in the full four-dimensional set). The generic early-time behaviour
of trajectories is to asymptote towards the linear dilaton–vacuum solution (A.4), represented
by the pointC, where all degrees of freedom exceptϕ are dynamically static. To the future,
these solutions asymptote towards the lineL+ for X1 > −1/

√
3. We note that the pointC is

theY1 = 1 endpoint of the lineL1. Figure 1 depicts this phase space.
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Figure 1. Phase diagram for the system (3.5)–(3.8) in the NS–NS (3 > 0) sector withρ 6= 0 and
K̃ = 0. The labelL+ refers to aline of equilibrium points. In this phase space, ˙ϕ > 0 is assumed.
The labels in all figures correspond to those equilibrium points discussed in the text. Throughout,
large full circles will represent sources (i.e. repellers), large grey-filled circles will represent sinks
(i.e. attractors), and small full circles will represent saddles. Grey curves (in subsequent figures)
represent typical trajectories found within the two-dimensional invariant sets, broken black curves
are those trajectories along the intersection of the invariant sets and full black curves are typical
trajectories within the full three-dimensional phase space.

3.1.2. The invariant setρ = 0 for 3 > 0, K̃ > 0. In theρ = 0 case, the system reduces
to the three dimensions of{X1, Y1, Z1} (V1 = 1 − X2

1 − Z1). The equilibrium points are
the linesL± with eigenvaluesλ1, λ2 andλ3 (from section 3.1), and the two endpoints of
L1 with eigenvaluesλ± and λ3 (from section 3.1). These endpoints are specified by the
conditionY 2

1 = 1 and we denote them byL(±)1 , where the ‘±’ in the superscript reflects the
sign ofY1.

For this invariant set the entire lineL+ acts as a global sink and the entire lineL− acts
as a global source. Furthermore, we note that forL±1 , λ− = 0, and so these two points are
non-hyperbolic. However, the eigenvectors associated with these zero eigenvalues are both
[−2/
√

3, 1, 0] and are completely located in the(X1, Y1)-plane. Hence, if we chooseZ1 = 0
and rotate the(X1, Y1) axes such that

x̃ ≡ (Y1∓ 1)−
√

3

2
X1, ỹ ≡ (Y1∓ 1) +

2√
3
X1,

we see that in the vicinity of the equilibrium point, the trajectories alongx̃ for ỹ = 0 are also
along these eigenvectors. Hence, forỹ = 0 and small̃x, it follows that

dx̃

dT
≈ ∓ x̃

7
.
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Figure 2. Phase diagram for the system (3.5)–(3.8) in the NS–NS (3 > 0) sector withρ = 0 and
K̃ > 0. The labelsL+ andL− refer to linesof equilibrium points, and the labelsL(+)1 andL(−)1
represent the equilibrium points which are the endpoints of the lineL1 (for whichX1 = +1 and
X1 = −1, respectively). In this phase space, ˙ϕ > 0 is assumed. See also the caption to figure 1.

Consequently, forY1 = +1, the trajectory along̃x asymptotes towards the equilibrium point,
whereas the trajectory alongx̃ for Y1 = −1 asymptotes away from the equilibrium point. This
implies that the pointsL±1 are saddle points. The phase space is depicted in figure 2.

The quantityX1/
√
Z1 is monotonically decreasing. Such a monotonic function excludes

the possibility of periodic or recurrent orbits in this three-dimensional space. Therefore,
solutions generically asymptote into the past towardsL− and into the future towardsL+. In
this three-dimensional set, spatial curvature is dynamically important only at intermediate
times.

3.1.3. Qualitative analysis of the four-dimensional system.The qualitative dynamics in the
full four-dimensional phase space is as follows. The past attractors consist of the lineL− for
X1 < 1/

√
3 and the lineL1 for Y1 > 0. The future-attractor sets consist of the linesL+ for

X1 > −1/
√

3 and the lineL1 for Y1 < 0. We note thatY1/
√
V1 is monotonically increasing

and this implies that there are no periodic or recurrent orbits in the full four-dimensional phase
space. Therefore, solutions are generically asymptotic in the past to either the lineL− for
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h∗ < 1
3 or to the lineL1 for n > 0. Similarly, solutions are generically asymptotic in the future

to eitherL+ for h∗ > − 1
3 orL1 for n < 0.

SinceY1/
√
V1 is monotonically increasing,Y1 → +1 orV1 → 0 asymptotically to the

future. These limits represent global sinks on the lineL+. Conversely,Y1 → −1 orV1 → 0
asymptotically to the past, corresponding to the global sources on the lineL−. There are also
equilibrium points for finiteY1 ≡ Y∗ inside the phase space on the lineL1. Again, since
Y1/
√
V1 is monotonically increasing, the pointsY∗ < 0 are global sinks andY∗ > 0 are global

sources. All of this is consistent with the above discussion presented in section 2.2 regarding
the generic asymptotic behaviour.

We note that the reflectionsX1→−X1 andY1→−Y1 are equivalent to a time reversal of
the dynamics. Therefore, there are orbits starting on the lineL− (for X1 < 1/

√
3) and ending

on the lineL1 (for Y∗ < 0). Similarly, there are orbits which begin on the lineL1 (for Y∗ > 0)
and end on the lineL+ (for X1 > −1/

√
3). Due to the existence of the monotonic function

and the continuity of orbits in the four-dimensional phase space, solutions cannot start and
finish onL1. This is best illustrated in the invariant setZ1 = 0. In addition, orbits may start
on the lineL− (for X1 < 1/

√
3) and end on the lineL+ (for X1 > −1/

√
3). Investigation of

the invariant setZ1 = 0 also indicates which sources and sinks are connected; not all orbits
fromL− can evolve towardsL+.

Although the linesL± lie in both of the invariant setsρ = 0 andK̃ = 0, the lineL1 does
not. On this line,X1 = 0, and the solutions are therefore static(α̇ = β̇ = 0). Equation (2.21)
then implies that the axion field and spatial curvature can both be dynamically significant at
early and late times for the appropriate orbits.

3.2. The case3 > 0, K̃ < 0

In this case, we choose the negative sign forU2 in equation (3.1), the positive sign forV2, and
the definitionξ2 = ϕ̇2. The generalized Friedmann constraint (2.16) now implies that

06 X2
2 +Z2 +U2 + V2 6 1. (3.11)

For this system,Y 2
2 = 1, and so the four-dimensional system, consisting of the variables

06 {X2
2, Z2, U2, V2} 6 1, is given by:

dX2

dT
=
√

3
(
1−X2

2 − Z2 − V2 − 2
3U2

)
+X2

(
1−X2

2 − Z2
)
, (3.12)

dZ2

dT
= 2Z2

(
1−X2

2 − Z2
)
> 0, (3.13)

dU2

dT
= −2U2

(
X2

2 +Z2 +
1√
3
X2

)
, (3.14)

dV2

dT
= −2V2

(
X2

2 +Z2
)
< 0. (3.15)

The invariant setsX2
2 + Z2 + U2 + V2 = 1, Z2 = 0, V2 = 0, U2 = 0 define the boundary of

the phase space. The equilibrium sets and their corresponding eigenvalues (denoted byλ) are
given by

S+: X2 = − 1√
3
, Z2 = 0, U2 = 2

3, V2 = 0;(
λ1, λ2, λ3, λ4

) = (− 2
3,

2
3,

4
3,

4
3

)
, (3.16)
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C: X2 = 0, Z2 = 0, U2 = 0, V2 = 1;(
λ1, λ2, λ3, λ4

) = (1, 0, 2, 0), (3.17)

L+: Z2 = 1−X2
2, U2 = 0, V2 = 0;(

λ1, λ2, λ3, λ4
) = (− 2√

3

[
X2 +
√

3
]
,−2, 0,−2

√
3

[
X2 +

1√
3

])
. (3.18)

The pointC represents the static ‘linear dilaton–vacuum’ solution (A.4). The saddleS+

represents the ‘−’ branch of the Milne solution (A.2), where only the curvature term and scale
factor are dynamic.

3.2.1. The invariant setρ = 0 for 3 > 0, K̃ < 0. In theρ = 0 case, the system reduces to
the three dimensions of{X2, Z2, U2} (V2 = 1− X2

2 − Z2 − U2). The equilibrium points are
the same as above with eigenvaluesλ1, λ2 andλ3. We note that for this invariant set the entire
line L+ acts as a global sink andC acts as a source. Although one of the eigenvalues for the
pointC is zero, it is shown in the following subsubsection that this point is a source in the full
four-dimensional phase space. The argument is identical in this subsection.

The variableZ2 is monotonically increasing, and as such we see that the shear term is
negligible at early times, but becomes dynamically significant at late times. There are no
periodic or recurrent orbits in this three-dimensional phase space due to the existence of this
monotonic function. In general, solutions asymptote into the past towards the static solution
(A.4) (pointC). Solutions asymptote into the future towardsL+. Figure 3 depicts this three-
dimensional phase space.

3.2.2. Qualitative analysis of the four-dimensional system.The qualitative behaviour for the
invariant setK̃ = 0 is discussed in section 3.1.1 (see figure 1). In the four-dimensional set,
the pointC is non-hyperbolic because of the two zero eigenvalues. However, it can be shown
that this point is a source in the four-dimensional set by the following argument. We first
note that the variableZ2 is monotonically increasing and hence orbits asymptote into the past
towards the invariant setZ2 = 0. Similarly,V2 is a monotonically decreasing function, and so
orbits asymptote into the past towards largeV2 (i.e.V2 = 1). This implies that they asymptote
towards the pointC.

Since Z2 = 0 asymptotically, let us consider the invariant setZ2 = 0, where
equations (3.12)–(3.15) become

dX2

dT
=
√

3
(
1−X2

2 − V2 − 2
3Ũ2

)
+X2

(
1−X2

2

)
, (3.19)

dU2

dT
= −2U2

(
X2

2 +
1√
3
X2

)
, (3.20)

dV2

dT
= −2V2X

2
2. (3.21)

It is clear from equation (3.21) thatV2 increases monotonically into the past. Now, this three-
dimensional phase space is bounded by the surfaceX2

2 + U2 + V2 = 1, the ‘apex’ of which
lies atV2 = 1 (andX2 = U2 = 0). Therefore, all orbits in or on this phase space boundary
lie belowV2 = 1, and therefore asymptote into the past towardsV2 = 1. To further illustrate
that this point is indeed a source, it is helpful to consider the invariant setZ2 = U2 = 0,
X2

2 + V2 = 1. In the neighbourhood ofC, equation (3.19) becomes dX2/dT = X2(1− X2
2),

indicating that orbits are repelled fromX2 = 0. Hence, the pointC is the past attractor to the
full four-dimensional set.
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Figure 3. Phase diagram for the system (3.12)–(3.15) in the NS–NS (3 > 0) sector withρ = 0
andK̃ < 0. Note thatL+ represents aline of equilibrium points. See also the caption to figure 1.

The future attractor for this set is the lineL+ (forX2 > −1/
√

3). BothC andL+ lie in both
of the invariant setsρ = 0 andK̃ = 0, which is consistent with the analysis of equation (2.21).
We conclude, therefore, that the spatial curvature and the axion field are dynamically important
only at intermediate times, and are negligible at early and late times. The dynamical effect of
the shear becomes increasingly important because the variableZ2 increases monotonically. On
the other hand, the variableV2 decreases monotonically and the dynamical effect of the central
charge deficit,3, becomes increasingly negligible. In addition, the existence of monotonic
functions in the four-dimensional phase space prohibits closed orbits and serves as proof of
the evolution that is described above.

3.3. The case3 < 0, K̃ > 0

We choose the positive sign forU3 and the negative sign forV3 in equation (3.1) to ensure that
these variables are positive definite. We also defineξ2 ≡ ϕ̇2 + 3K̃ − 23 for this case. The
generalized Friedmann constraint equation can then be rewritten as

06 X2
3 +Z3 6 1, Y 2

3 +U3 + V3 = 1. (3.22)
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We again eliminateU3 (which is proportional toK̃), and consider the four-dimensional system
of ODEs for 06 {X2

3, Y
2
3 , Z3, V3} 6 1:

dX3

dT
= (1−X2

3 − Z3
)(√

3 +X3Y3
)− 1√

3

(
1− Y 2

3 − V3
)(

1−X2
3 − Z3

)
, (3.23)

dY3

dT
= 1√

3
X3Y3

(
1− Y 2

3 − V3
)

+
(
1− Y 2

3

)(
X2

3 +Z3
)
, (3.24)

dZ3

dT
= 2Z3

[
1√
3
X3
(
1− Y 2

3 − V3
)

+ Y3
(
1−X2

3 − Z3
)]
, (3.25)

dV3

dT
= 2V3

[
1√
3
X3
(
1− Y 2

3 − V3
)− Y3

(
X2

3 +Z3
)]
. (3.26)

The invariant setsY 2
3 + V3 = 1,X2

3 +Z3 = 1,Z3 = 0 define the boundary of the phase space.
The equilibrium sets and their corresponding eigenvalues (denoted byλ) are

L±: Y3 = ±1, Z3 = 1−X2
3, V3 = 0;

(λ1, λ2, λ3, λ4) =
(
∓ 2√

3

[√
3±X3

]
,∓2, 0,∓2

√
3

[
1√
3
±X3

])
, (3.27)

where again the zero eigenvalues arise because these are alllinesof equilibrium points. Here,
the global sink is the lineL+ for X3 > −1/

√
3 (saddle otherwise) and the global source is the

lineL− for X3 < 1/
√

3 (saddle otherwise). Stable solutions on the lineL+ correspond to the
rangeh∗ > − 1

3. The stable solutions onL− arise whenh∗ < 1
3.

3.3.1. The invariant set̃K = 0 for 3 < 0. This invariant set was studied in paper I, the
dynamics of which are as follows. The variablesX3 andY3 are monotonically increasing
functions, corresponding to ˙α andϕ̇ (respectively). The former implies that these trajectories
represent cosmologies that are initially contracting and then re-expand. In paper I, the third
variable used wasκ ≡ 1 − X2

3 − Z3. This is proportional toρ and is only dynamically
significant at intermediate times. It asymptoted to zero into the past and future, indicating that
the axion field is negligible at early and late times. All the equilibrium points in this invariant
set are represented by the dilaton–vacuum solutions (A.1) (the linesL±). In general, orbits
asymptote into the past towards the lineL− (for X3 < 1/

√
3), and asymptote to the future

towards the lineL+ (for X3 > −1/
√

3). Figure 4 depicts this three-dimensional phase space,
using the variables{X3, Y3, κ}.

3.3.2. The invariant setρ = 0 for 3 < 0, K̃ > 0. Sinceα̇ 6= 0 at the equilibrium points,
we examine theρ = 0 case, where the system reduces to the three dimensions{X3, Y3, V3}
(Z3 = 1− X2

3). The equilibrium points are the same as above with eigenvaluesλ1, λ2, λ3.
We note that the entire lineL+ acts as a global sink and that the entire lineL− acts as a global
source in this invariant set. The functionY3/

√
V3 is monotonically increasing, eliminating the

possibility of periodic orbits. Figure 5 depicts this three-dimensional phase space.

3.3.3. Qualitative analysis of the four-dimensional system.The qualitative dynamics in the
full four-dimensional phase space is as follows. The global repellers and attractors are the lines
L− andL+, respectively. Orbits generically asymptote into the past towards the lineL− (for
X3 < 1/

√
3), and into the future towardsL+ (forX3 > −1/

√
3). In the former case the stable

solutions are given by the ‘+’ branch of equation (A.1) forh∗ < 1
3. The stable sinks are given
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Figure 4. Phase portrait for the system (3.23)–(3.26) in the NS–NS (3 < 0) sector forK = 0 and
ρ 6= 0. Note that the labelsL+ andL− refer tolinesof equilibrium points. See also the caption to
figure 1.

by the ‘−’ branch withh∗ > − 1
3. Again, we see that the curvature term, axion field and the

central charge deficit are dynamically important only at intermediate times. The existence of
themonotonically increasingfunctionY3/

√
V3 excludes the possibility of periodic orbits and

serves to verify the above description of the evolution of the solutions in the four-dimensional
set.

3.4. The case3 < 0, K̃ < 0

For this case, the appropriate definition for the variableξ is ξ2 = ϕ̇2 − 23 and we choose
the negative signs for bothU4 andV4 in equation (3.1). The generalized Friedmann constraint
equation is written as

06 X2
4 +Z4 +U4 6 1, Y 2

4 + V4 = 1. (3.28)

TreatingV4 as the extraneous variable results in the four-dimensional system consisting of the
variables 06 {X2

4, Y
2
4 , Z4, U4} 6 1 is given by:

dX4

dT
= (1−X2

4 − Z4
)(√

3 +X4Y4
)− 2√

3
U4, (3.29)

dY4

dT
= (1− Y 2

4

)(
X2

4 +Z4
)
> 0, (3.30)

dZ4

dT
= 2Z4Y4

(
1−X2

4 − Z4
)
, (3.31)
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Figure 5. Phase diagram for the system (3.23)–(3.26) in the NS–NS (3 < 0) sector forρ = 0 and
K̃ > 0. Note thatL+ andL− representlinesof equilibrium points. See also the caption to figure 1.

dU4

dT
= −2U4

[
Y4
(
X2

4 +Z4
)

+
1√
3
X4

]
. (3.32)

The invariant setsX2
4 + Z4 + U4 = 1, Z4 = 0, Y 2

4 = 1, U4 = 0 define the boundary of
the phase space. The equilibrium sets and their corresponding eigenvalues (denoted byλ) are
given by

S±: X4 = ∓ 1√
3
, Y4 = ±1, Z4 = 0, U4 = 2

3;(
λ1, λ2, λ3, λ4

) = (± 2
3,∓ 2

3,± 4
3,± 4

3

)
, (3.33)

L±: Y4 = ±1, Z4 = 1−X2
4, U4 = 0;(

λ1, λ2, λ3, λ4
) = (∓ 2√

3

[√
3±X4

]
,∓2, 0,∓2

√
3

[
1√
3
±X4

])
. (3.34)

The global source for this system is the lineL− (for X4 < 1/
√

3,h∗ < 1
3) and the global sink

is the lineL+ (for X4 > −1/
√

3, h∗ > − 1
3). The saddle points,S±, are represented by the

Milne models (A.2), whereS+ corresponds to the ‘−’ solution andS− to the ‘+’ solution.
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Figure 6. Phase portrait for the system (3.29)–(3.32) in the NS–NS (3 < 0) sector withρ = 0
andK̃ < 0. Note thatL+ andL− representlinesof equilibrium points. See also the caption to
figure 1.

3.4.1. The invariant setρ = 0 for 3 < 0, K̃ < 0. This system reduces to the three
dimensions of{X4, Y4, Z4} (U4 = 1− X2

4 − Z4). The equilibrium points are the same as
above with eigenvaluesλ1, λ2, λ3. The entire linesL+ andL− now act as a global sink and
source, respectively. Recurrent orbits are forbidden by the existence of the monotonically
increasing variableY4. Hence, solutions generically asymptote into the past (future) towards
the ‘+’ (‘−’) dilaton–vacuum solutions (A.1) and the curvature term and central charge deficit
are dynamically significant only at intermediate times. Figure 6 depicts this three-dimensional
phase space.

3.4.2. Qualitative analysis of the four-dimensional system.The dynamical behaviour in the
invariant setK̃ = 0 is identical to that described in section 3.3.1 (see figure 4). The qualitative
dynamics in the full four-dimensional phase space is as follows. SinceY4 is monotonically
increasing, the orbits asymptote into the past towardsY4 = −1 and into the future towards
Y4 = +1. As in the above examples, the existence of such a monotonic function excludes
the possibility of periodic orbits in the four-dimensional phase space. Most orbits asymptote
into the past towards the lineL− (for X4 < 1/

√
3), and into the future towards the lineL+

(for X4 > −1/
√

3). The range of values forh∗ corresponding to stable solutions is given by
h∗ > − 1

3 for those onL+ andh∗ < 1
3 for those onL−. The variableY4 increases monotonically
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along orbits and this implies that ˙ϕ is dynamically significant at early and late times, but
dynamically insignificant at intermediate times. Conversely, we see that the curvature term,
central charge deficit and axion field are dynamically important only at intermediate times,
and are negligible at early and late times.

This concludes the qualitative analysis of the isotropic curvature string cosmologies with
NS–NS fields. In the next section, we consider the effect on the dynamics of introducing a
non-trivial3M.

4. Non-zero cosmological constantΛM (Λ = 0)

We begin this section by defining new variables

d

dt
≡ e

1
2 (ϕ+3α) d

dT
, N ≡ 6β ′2, ψ ≡ ϕ′, h ≡ α′, K ≡ K̃e−(ϕ+3α),

(4.1)

where a prime denotes differentiation with respect to the new time coordinate,T .
Equations (2.11)–(2.16) may then be written as the system of ODEs:

h′ = − 3
2h

2 + 1
2hψ −K − 1

23M + 1
2ρe−(ϕ+3α) (4.2)

ψ ′ = 3
2h

2 − 3
2hψ + 1

2N + 3
2K − 1

4ρe−(ϕ+3α) (4.3)

N ′ = (ψ − 3h)N (4.4)

K ′ = −(ψ + 5h)K (4.5)

ρ ′ = −6hρ (4.6)

3h2 − ψ2 +N − 3K +3M + 1
2ρe−(ϕ+3α) = 0. (4.7)

The variableρ may be eliminated due to the constraint equation (2.16). It also proves
convenient to further define the set of variables

µ ≡
√

3h

ξ
, χ ≡ ψ

ξ
, ν ≡ N

ξ2
,

ζ ≡ ±3K

ξ2
, λ ≡ ±3M

ξ2
,

d

dT
≡ ξ d

dτ
,

(4.8)

where the± signs ensure thatζ > 0 andλ > 0. The variableξ is defined in each of the
following four subsections by

• 3M > 0

∗ K > 0: ξ2 ≡ 3K +ψ2 (section 4.1),
∗ K < 0: ξ2 ≡ ψ2 (section 4.2),

• 3M < 0

∗ K > 0: ξ2 ≡ 3K +ψ2 −3M (section 4.3),
∗ K < 0: ξ2 ≡ ψ2 −3M (section 4.4).

With these definitions, all variables are bounded, 06 {µ2, χ2, ν, ζ, λ} 6 1, and equation (4.7)
now reads

1
2ρξ

−2e−(ϕ+3α) = χ2 ± ζ ∓ λ− µ2 − ν > 0. (4.9)

Our overall approach in this section is identical to that of section 3 and we refer the reader to
the discussion immediately after equation (3.2) for the general outline adopted.
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4.1. The case3M > 0,K > 0

ForK > 0, equation (4.7) is written in the new variables as

06 µ2
1 + ν1 + λ1 6 1, ζ1 + χ2

1 = 1, (4.10)

where the ‘+’ sign is chosen for bothλ andζ in equation (4.8). For this case, the variable
ζ1 ≡ 1− χ2

1 will be considered extraneous and the system (4.2)–(4.5) then reduces to the
four-dimensional system:

dµ1

dτ
= (1− µ2

1 − ν1− 1
2λ1

)(√
3 +µ1χ1

)− 1√
3

(
1− µ2

1

)(
1− χ2

1

)−√3λ1, (4.11)

dχ1

dτ
= (1− χ2

1

)[
µ2

1 + ν1 +
1

2
λ1 +

1√
3
µ1χ1

]
, (4.12)

dν1

dτ
= ν1

[
2√
3
µ1
(
1− χ2

1

)
+ 2χ1

(
1− µ2

1 − ν1− 1
2λ1

)]
, (4.13)

dλ1

dτ
= λ1

[
1√
3
µ1
(
5− 2χ2

1

)
+ χ1

(
1− 2µ2

1 − 2ν1− λ1
)]
. (4.14)

The invariant setsµ2
1 + ν1 + λ1 = 1 (ρ = 0), χ2

1 = 1 (K = 0), ν1 = 0 (N = 0) andλ1 = 0
(3M = 0) define the boundaries to the phase space. The equilibrium points and their respective
eigenvalues (denoted byλ) are given by

L±: χ1 = ±1, µ2
1 + ν1 = 1, λ1 = 0;

(λ1, λ2, λ3, λ4) =
(

0,∓ 2√
3

[√
3± µ1

]
,
√

3

[
µ1∓ 1√

3

]
,∓2
√

3

[
1√
3
± µ

])
.

(4.15)

S±1 : µ1 = ∓ 1√
27
, χ1 = ±1, ν1 = 0, λ1 = 16

27
;(

λ1, λ2, λ3, λ4
) = (∓ 1

3

[
1 + i1

3

√
231

]
,∓ 1

3

[
1− i 1

3

√
231

]
,∓ 4

3,± 4
9

)
. (4.16)

From the eigenvalues, we deduce thatL+ is a late-time attractor forµ2
1 <

1
3, and thatL− is an

early-time repeller forµ2
1 <

1
3. In both cases,χ2

1 = 1 and thereforeK = 0 (ζ1 = 0). The ‘+’
solution of (A.1) is a sink forh2

∗ <
1
9 and the ‘−’ solution of (A.1) is a source forh∗ < 1

9. The
pointsS±1 are saddle points on the boundary of the phase space and correspond to the exact
solution (A.5).

4.1.1. The invariant setK = 0 for 3M > 0. This invariant set was studied in paper II
by employing dynamical variables equivalent to{µ1, λ1, ν1}, and we now summarize the
important features of the model. For spatially isotropic solutions confined to the invariant
setν1 = 0, most trajectories evolve from the equilibrium pointS+

1 (labelled ‘F ’ in paper II)
located at(µ1, ν1, λ1) = (−1/

√
27, 0, 16

27) (corresponding to the ‘−’ solution (A.5)) and are
future asymptotic to a heteroclinic orbit. There are two saddle equilibrium points,S1 andS2,
which are the endpoints of the lineL+; S1 is given by the ‘−’ branch of equation (A.1) with
h∗ = −1/

√
3 andS2 corresponds toh∗ = 1/

√
3. There are also the single boundary orbits in

the invariant setsλ1 = 0, corresponding to3M = 0 andλ1 + µ2
1 = 1 (constant axion field).

An orbit spends the majority of its time in the neighbourhoods ofS1 andS2 and shadows the
respective boundary orbits as it rapidly moves between the two saddles. Progressively more
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Figure 7. Phase portrait for the system (4.11)–(4.13) for3M > 0 with ρ 6= 0 andK = 0. Note
that the labelL+ refers to aline of equilibrium points. In this phase space, ˙ϕ > 0 is assumed. See
also the caption to figure 1.

time is spent near the saddles for each completed cycle, and the dynamics is therefore not
periodic.

An anisotropic contribution(ν1 6= 0) does not introduce new sources into the system
and the pointS+

1 is still the only source. Figure 7 depicts the full three-dimensional space.
Equation (4.13) implies thatν1 is a monotonically increasing function and consequently the
orbits are repelled fromS+

1 and spiral out monotonically. The general behaviour for most
trajectories in this phase space is to evolve away from the equilibrium pointS+

1 , spiral about
the lineµ1 = −1/

√
27, ν1 = 13

8 (λ1 − 16
27) and eventually asymptote towards the lineL+ for

µ2
1 <

1
3. These trajectories were discussed in detail in paper II.

4.1.2. The invariant setρ = 0 for 3M > 0, K > 0. For the invariant setρ = 0, the
system (4.11)–(4.14) reduces to the three dimensions{µ1, χ1, ν1} (λ1 = 1−µ2

1− ν1). In this
invariant set,µ is a monotonically decreasing function, and so the possibility of periodic orbits
is excluded. The only equilibrium points are the linesL± with the first three eigenvalues
in equation (4.15), and therefore the early- and late-time attractors are the linesL− (for
µ1 > −1/

√
3, h∗ > − 1

3) andL+ (for µ1 < 1/
√

3, h∗ < 1
3). The curvature and cosmological

constant are only dynamically significant at intermediate times and the phase space is depicted
in figure 8.
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Figure 8. Phase portrait for the system (4.11)–(4.13) for3M > 0 with ρ = 0 field andK > 0.
Note thatL+ andL− representlinesof equilibrium points. See also the caption to figure 1.

4.1.3. Qualitative analysis of the four-dimensional system.The qualitative dynamics in the
full four-dimensional phase space is as follows. The functionχ1ν

1/2
1 (1−µ2

1−ν1−λ1)
1/6λ

−1/3
1

increases monotonically and so there can be no periodic orbits. The only past attractors
belong to the lineL− for µ2

1 <
1
3 (h

2
∗ <

1
9) and the only future attractors belong to the

line L+ for µ2
1 < 1

3 (h
2
∗ <

1
9). Both linesL± lie in both of the invariant setsρ = 0

andK̃ = 0, which is consistent with the analysis of equation (2.21). This implies that the
spatial curvature, cosmological constant and axion field are only dynamically significant at
intermediate times.

For orbits in the four-dimensional phase space, the complex eigenvalues of the saddle point
S±1 suggest that the heteroclinic sequences may exist in the four-dimensional set. Indeed, those
orbits which asymptote to thẽK = 0 invariant setdogenerically end in a heteroclinic sequence,
interpolated between two equilibrium points representing two dilaton–vacuum solutions, as
discussed in section 4.1.1. However, for those orbits which asymptote towards theρ = 0
invariant set, there are no heteroclinic sequences (as is evident from figure 8).
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4.2. The case3M > 0,K < 0

ForK < 0, equation (4.7) is written in the new variables as

06 µ2
2 + ν2 + ζ2 + λ2 6 1, χ2

2 = 1, (4.17)

where the ‘+’ sign forλ and the ‘−’ sign forζ have been chosen in equation (4.8). For this case,
we explicitly chooseχ2 = +1, asχ2 = −1 corresponds to a time reversal of equations (4.2)–
(4.6). The system (4.2)–(4.5) then reduces to the four-dimensional system:

dµ2

dτ
= (1− µ2

2 − ν2 − 1
2λ2

)(√
3 +µ2

)−√3
(
λ2 + 2

3ζ2
)
, (4.18)

dν2

dτ
= 2ν2

(
1− µ2

2 − ν2 − 1
2λ2

)
, (4.19)

dζ2

dτ
= −2ζ2

(
µ2

2 + ν2 +
1

2
λ2 +

1√
3
µ2

)
, (4.20)

dλ2

dτ
= λ2

(
1− 2µ2

2 − 2ν2 − λ2 +
√

3µ2
)
. (4.21)

The invariant setsµ2
2 + ν2 + ζ2 + λ2 = 1 (ρ = 0), ζ2 = 0 (K = 0), ν1 = 0 (N = 0) and

λ1 = 0 (3M = 0) define the boundaries to the phase space. The equilibrium points and their
respective eigenvalues (denoted byλ) are given by

S+: µ2 = − 1√
3
, ζ2 = 2

3, λ2 = 0, ν2 = 0;

(λ1, λ2, λ3, λ4) = 1
3(2, 4,−2, 4) (4.22)

N : µ2 = − 1
5

√
3, ν2 = 0, ζ2 = 18

25, λ2 = 4
25;

(λ1, λ2, λ3, λ4) = 2
5(1 + i

√
2, 1− i

√
2, 4, 2) (4.23)

L+: µ2
2 + ν2 = 1, ζ2 = 0, λ2 = 0;

(λ1, λ2, λ3, λ4) =
(
0,− 2√

3

[
µ2 +
√

3
]
,
√

3

[
µ2 − 1√

3

]
,−2
√

3

[
µ2 +

1√
3

])
.

(4.24)

From the eigenvalues, it is clear thatL+ is a late-time attractor forµ2
2 <

1
3 (h2

∗ <
1
9). The

pointN inside the phase space is the early-time attractor for the system, and represents the
curvature-driven solution (A.6). The saddle pointS+ corresponds to the ‘−’ branch of the
Milne solution (A.2).

4.2.1. The invariant setρ = 0 for 3M > 0, K < 0. For this invariant set, the
four-dimensional system (4.18)–(4.21) reduces to a three-dimensional system involving the
coordinates{µ2, ν2, λ2} (ζ2 = 1− µ2

2 − ν2 − λ2). The equilibrium points are the same as
for the full four-dimensional set, but the eigenvalues are now (λ1, λ2, λ3). The variableν
is a monotonically increasing function, the existence of which eliminates the possibility of
recurrent orbits. Thus, the generic behaviour of this model is for solutions to asymptote into
the past towards the curvature-dominated solution (A.6), represented by the pointN , and to
the future towards the lineL+ for µ2 < 1/

√
3 (h∗ < 1

3). Figure 9 depicts this phase space.
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Figure 9. Phase portrait for the system (4.18) and (4.19) for3M > 0 withρ = 0 andK < 0. Note
thatL+ represents aline of equilibrium points. In this phase space, ˙ϕ > 0 is assumed. See also the
caption to figure 1.

4.2.2. Qualitative analysis of the four-dimensional system.The invariant setK = 0 was
described in section 4.1.1 (see figure 7). In the full four-dimensional set, the pointN is the
early-time attractor, andL+ is the late-time attractor forµ2

2 <
1
3 (h2

∗ <
1
9). The pointN lies

in the invariant setρ = 0 andL+ lies in both of the invariant setsρ = 0 andK̃ = 0. This is
consistent with the analysis of equation (2.21). We see thatν2 is a monotonically increasing
function, and so there are no recurrent or periodic orbits. Furthermore, sinceν2 increases
monotonically, the shear in the model is initially dynamically trivial, but becomes significant
asymptotically into the future. The axion field and cosmological constant are only dynamically
important at intermediate times and do not play a role in the early- and late-time behaviour
of the cosmologies. The curvature term is dynamically significant at early and intermediate
times, but becomes dynamically trivial at late times.

Orbits which asymptote into the future towards theK = 0 invariant set generically end
in a heteroclinic sequence, as described in section 4.1.1 and depicted in figure 7. However,
such a sequence does not occur for orbits which asymptote into the future towards theρ = 0
invariant set. Indeed, by examining the eigenvalues of the equilibrium points of the four-
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dimensional system, there do not seem to be heteroclinic sequences outside of theK̃ = 0
invariant set.

4.3. The case3M < 0,K > 0

For completeness we now consider the cases where3M < 0. WhenK > 0, equation (4.7) is
written in terms of the new variables as

06 µ2
3 + ν3 6 1, χ2

3 + ζ3 + λ3 = 1, (4.25)

where the ‘−’ sign for λ and the ‘+’ sign forζ have been chosen in equation (4.8). The
variableλ3 is chosen as the extraneous variable and the system (4.2)–(4.5) then reduces to the
four-dimensional system:

dµ3

dτ
= (1− µ2

3 − ν3
)(√

3 +µ3χ3
)

+ 1
2

√
3
(
1− µ2

3

)(
1− χ2

3 − 5
3ζ3
)
, (4.26)

dχ3

dτ
= − 1

2

√
3
[
µ3χ3

(
1− χ2

3 − 5
3ζ3
)]− 1

2

(
1− χ2

3

)(
1− 2µ2

3 − 2ν3
)

+ 1
2ζ3 (4.27)

dν3

dτ
= ν3

[
2χ3

(
1− µ2

3 − ν3
)−√3µ3

(
1− χ2

3 − 5
3ζ3
)]
, (4.28)

dζ3

dτ
= −ζ3

[
2χ3

(
µ2

3 + ν3
)

+
1√
3
µ3
(
5− 3χ2

3 − 5ζ3
)]
. (4.29)

The invariant setsµ2
3+ν3 = 1,χ2

3 +ζ3 = 1,ν3 = 0 andζ3 = 0 define the boundary to the phase
space. The equilibrium sets and their corresponding eigenvalues (denoted byλ) are given by

L±: χ3 = ±1, µ2
3 + ν3 = 1, ζ3 = 0;

(λ1, λ2, λ3, λ4) =
(

0,∓ 2√
3

[√
3± µ3

]
,
√

3

[
µ3∓ 1√

3

]
,

− 2
√

3

[
µ3± 1√

3

])
, (4.30)

R: χ3 = − 1√
3
, µ3 = −1, ν3 = 0, ζ3 = 0;

(λ1, λ2, λ3, λ4) = 1√
3
(1, 2, 6, 10), (4.31)

A: χ3 = 1√
3
, µ3 = 1, ν3 = 0, ζ3 = 0;

(λ1, λ2, λ3, λ4) = − 1√
3
(1, 2, 6, 10). (4.32)

Here, there are two early-time attractors. The first is the pointR, representing the ‘+’ branch
of the constant axion, spatially isotropic solution (A.7), where ˙ϕ < 0. The second is the line
L− for µ2

3 <
1
3 (h2

∗ <
1
9). Likewise, there are two late-time attractors: these are the pointA,

representing the ‘−’ solution of equation (A.7), where ˙ϕ > 0, and the lineL+ for µ2
3 <

1
3

(h2
∗ <

1
9).
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Figure 10. Phase portrait for the system (4.26)–(4.29) for3M < 0 with ρ 6= 0 andK = 0. Note
that the labelsL+ andL− refer tolinesof equilibrium points. See also the caption to figure 1.

4.3.1. The invariant setK = 0 for 3M < 0. In paper II, this invariant set was examined
using variables which are the same as{µ3, χ3, ν3}. There it was shown thatµ3 is monotonically
increasing, so that most trajectories in this phase space represent bouncing cosmologies which
are initially contracting. Most trajectories asymptote into the past towards eitherL− or toR
(see above). To the future, most orbits asymptote towards eitherL+ or A. Figure 10 depicts
this three-dimensional phase space.

4.3.2. The invariant setρ = 0 for 3M < 0, K > 0. For this invariant set, the
four-dimensional system (4.26)–(4.29) reduces to a three-dimensional system involving the
coordinates{µ3, χ3, ζ3} (ν3 = 1 − µ3

2). The equilibrium points are the same as the full
four-dimensional set, but with eigenvalues (λ1, λ2, λ3), and so the lineL− is a source for
µ3 > −1/

√
3 (h∗ > − 1

3) and the lineL+ is a sink forµ3 < 1/
√

3 (h∗ < 1
3). The function

χ3/
√
ν3 is monotonically increasing, and so there are no recurring or periodic orbits. Hence,

solutions generically asymptote into the past towardsL− orR and into the future towardsL+

orA.

4.3.3. Qualitative analysis of the four-dimensional system.The function (χ3 +
(1/
√

3)µ3)/
√
ν3 is monotonically increasing, and so there are no recurring or periodic orbits

in the full four-dimensional set. The early-time attractors are the lineL− for µ2
3 <

1
3 (h2

∗ <
1
9)

and the pointR. The late-time attractors are the lineL+ for µ2
3 <

1
3 (h2

∗ <
1
9) and the point
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Figure 11. Phase portrait for the system (4.26)–(4.29) for3M < 0 with ρ = 0 andK > 0. Note
thatL+ andL− representlinesof equilibrium points. See also the caption to figure 1.

A. All of these attractors lie in both of the invariant setsρ = 0 andK̃ = 0 and the axion field
and curvature term are dynamically significant only at intermediate times. For early and late
times, the cosmological constant is dynamically important only when the shear is dynamically
trivial (e.g. the pointsR andA) and vice versa (e.g. the linesL±).

4.4. The case3M < 0,K < 0

For this case, equation (4.7) is written in terms of the new variables as

06 µ2
4 + ν4 + ζ4 6 1, χ2

4 + λ4 = 1, (4.33)

where the ‘−’ sign for bothλ andζ has been chosen in equation (4.8). The variableλ4 is chosen
as the extraneous variable and the system (4.2)–(4.5) then reduces to the four-dimensional
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system:

dµ4

dτ
= (1− µ2

4 − ν4
)(√

3 +µ4χ4
)

+

√
3

2

(
1− µ2

4

)(
1− χ2

4

)− 2√
3
ζ4, (4.34)

dχ4

dτ
= − 1

2

(
1− χ2

4

)[
1− 2µ2

4 − 2ν4 +
√

3µ4χ4
]
, (4.35)

dν4

dτ
= ν4

[
2χ4

(
1− µ2

4 − ν4
)−√3µ4

(
1− χ2

4

)]
, (4.36)

dζ4

dτ
= −ζ4

[
2χ4

(
µ2

4 + ν4
)

+
1√
3
µ4
(
5− 3χ2

4

)]
. (4.37)

The invariant setsµ2
4+ν4+ζ4 = 1,χ2

4 = 1,ν4 = 0 andζ4 = 0 define the boundary to the phase
space. The equilibrium sets and their corresponding eigenvalues (denoted byλ) are given by

L±: χ4 = ±1, µ2
4 + ν4 = 1, ζ4 = 0;

(λ1, λ2, λ3, λ4) =
(

0,∓ 2√
3

[√
3± µ4

]
,
√

3

[
µ4 ∓ 1√

3

]
,

− 2
√

3

[
µ4 ± 1√

3

])
, (4.38)

R: χ4 = − 1√
3
, µ4 = −1, ν4 = 0, ζ4 = 0;

(λ1, λ2, λ3, λ4) = 1√
3
(1, 2, 6, 10), (4.39)

A: χ4 = 1√
3
, µ4 = 1, ν4 = 0, ζ4 = 0;

(λ1, λ2, λ3, λ4) = − 1√
3
(1, 2, 6, 10), (4.40)

S±: χ4 = ±1, µ4 = ∓1√
3
, ν4 = 0, ζ4 = 2

3;

(λ1, λ2, λ3, λ4) = 2
3(∓1,±1,±2, 0). (4.41)

As in the previous case, there are two early-time attractors: the pointR and the lineL− for
µ2

4 <
1
3 (h2

∗ <
1
9). Likewise, there are two late-time attractors: the pointA and the lineL+ for

µ2
4 <

1
3 (h2

∗ <
1
9).

4.4.1. The invariant setρ = 0 for 3M < 0, K < 0. For this invariant set, the
four-dimensional system (4.34)–(4.37) reduces to a three-dimensional system involving the
coordinates{µ4, χ4, ν4} (ζ4 = 1− µ3

4 − ν4). The equilibrium points are the same as the full
four-dimensional set, and the eigenvalues are (λ1, λ2, λ3). The difference is that the lineL+ is
a sink forµ4 < 1/

√
3 and the lineL− is a source forµ4 > −1/

√
3. The functionµ4/

√
ν4 is

monotonically increasing, and so periodic orbits cannot occur. Hence, solutions generically
asymptote into the past towards the ‘+’ branch of equation (A.1) forh∗ > − 1

3, or the ‘+’
solution of equation (A.7). Into the future, solutions asymptote towards either the ‘−’ branch
of equation (A.1) forh∗ < 1

3, or to the ‘−’ solution of equation (A.7). Figure 12 depicts this
phase space.
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Figure 12. Phase portrait for the system (4.34)–(4.37) for3M < 0 with ρ = 0 andK < 0. Note
thatL+ andL− representline of equilibrium points. See also the caption to figure 1.

4.4.2. Qualitative analysis of the four-dimensional system.The invariant setK = 0 is
discussed in section 4.3.1 (see figure 10). The functionµ4/

√
ν4 is monotonically increasing,

and so there are no recurring or periodic orbits. The asymptotic behaviour is identical to that
described in section 4.3.3.

5. Discussion

In this paper, we have presented a complete qualitative analysis for the isotropic curvature
string cosmologies derived from the effective action (2.10) in the two cases where either
3 = 0 or3M = 0 (the cases where both terms are non-zero is discussed in [24]). This was
made possible by compactifying the phase space in terms of suitably defined variables. When
3M = 0, equation (2.10) represents the action for the NS–NS fields that arise in both the type II
and heterotic string theories when an arbitrary central charge deficit is present. We identified
the cosmological constant3M with terms that arise in the RR sector of the massive type IIA
supergravity theory when appropriate conditions apply.
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The subsetβ̇ = 0 corresponds to the class of spatially isotropic FRW universes with
arbitrary spatial curvature. In the positively curved case, we have extended the work of Easther
et al [7], who performed a perturbation analysis on the static, closed FRW model to show that
it was a late-time attractor. More generally, the models we have considered represent Bianchi
type I, V and IX universes.

For each case, we have established the existence of monotonic functions which precludes
the existence of recurrent or periodic orbits. Consequently, the early- and late-time behaviour
of these models can be determined by analysing the nature of the equilibrium points/lines of the
system. In all cases, the spatially flat dilaton–vacuum solutionsL±, given by equation (A.1),
act as either early- or late-time attractors and, in many cases, act as both. Because these
solutions lie in both theρ = 0 andK̃ = 0 invariant sets and contain neither a central charge
deficit nor a non-zero3M contribution, we may conclude that the shear and dilaton fields are
dynamically dominant asymptotically. Furthermore, with the exception of the3 > 0, K̃ > 0
case, all early- and late-time attracting sets lie in either theρ = 0 invariant set or thẽK = 0
invariant set, and a majority of these sets lie in both.

Thus, we see a generic feature in which the curvature terms and the axion field are
dynamically significant at intermediate times and are asymptotically negligible at early and
late times. Theexceptionto this generic behaviour is the3 > 0, K̃ > 0 case, where the
generalized linear dilaton–vacuum solution (A.3), in which neitherρ = 0 nor K̃ = 0, acts
both as a repeller (for ˙ϕ < 0) and as an attractor (for ˙ϕ > 0). In these solutions, the variables
ρ andK̃ are proportional to the central charge deficit,3. Note that asymptotically ˙α = 0 (and
β̇ = 0) and hence these models are static.

When3 < 0, the central charge deficit is dynamically significant only at intermediate
times, and is asymptotically negligible at early and late times. In fact, the only repelling and
attracting sets in this instance are the dilaton–vacuum solutions. When3 > 0, the central
charge deficit can be dynamically significant at both early and late times, and the corresponding
solution is the generalized linear dilaton–vacuum solution (A.3), represented by the lineL1.
WhenK̃ > 0, these solutions can be repelling ( ˙ϕ < 0) and attracting ( ˙ϕ > 0). WhenK̃ < 0,
the endpoint of this line,C (representing equation (A.4)) is a repeller.

When3M > 0, the cosmological constant may play a significant role in the early- and
late-time dynamics. For instance, although in the four-dimensional sets there are no repelling
or attracting equilibrium points in which3M is dynamically significant, we have found that
the orbits which are attracted to thẽK = 0 invariant set end in a heteroclinic sequence which
interpolates between two dilaton–vacuum solutions (see section 4.1.1, figure 7 and paper II).
During this interpolation, the orbits repeatedly spend time in a region of phase space in which
3M is dynamically significant (the regionλ1 > 0 in figure 7), although most time is spent
near the dilaton–vacuum saddle points where3M is dynamically negligible. When3M < 0,
the cosmological constant can be dynamically significant at both early and late times, since
solutions typically asymptote to the solution (A.7), where the shear and axion field are static.
For the repelling and attracting sets of the3M < 0 cases, the shear term is only dynamically
significant when the cosmological constant isnot, and vice versa.

The parameterβ measures the degree of anisotropy in the models. If we define
isotropization by the conditioṅβ → 0 [25, 26], then we note that in generalβ̇ 6= 0 at the
equilibrium points on the lineL±. Therefore, solutions asymptoting towards the sinks on
these lines do not isotropize to the future. At all other equilibrium points, however,β̇ = 0 and
thecorresponding appropriate string cosmologies therefore ‘isotropize’. This is an important
result and a similar situation occurs in the time-reverse models. On the other hand, the question
of isotropization of string cosmologies in a more general context remains an open question.
Note that the shear in the models that we have discussed is essentially of Bianchi type I. In
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general relativity with a perfect fluid, it is known that Bianchi type I models isotropize, whereas
in general spatially homogeneous models they donot isotropize [25, 26].

For the equilibrium points corresponding to the sinks on the lineL+, β̇2 ∝ ϕ̇2 (ρ = K̃ = 0),
and so the energy densities of the modulus and dilaton fields are proportional to one another.
Hence, the corresponding dilaton–vacuum solutions are ‘matter scaling’ string cosmology
solutions, which act as local attractors, similar to the matter scaling solutions in general
relativistic scalar field cosmologies [27]. Finally, for every equilibrium point within these
phase spaces, the scale factor of the corresponding exact solution is a power-law function of
cosmic time, and therefore all of the corresponding exact solutions are self-similar [28].

The cases in which ˙ϕ < 0 are related to a time reversal of the models discussed in the text.
We have not explicitly considered these models here; however, the conclusions concerning
isotropization are similar although the details of these models may be different (e.g. the role
of sources and sinks can be interchanged).

In conclusion, therefore, we have established the qualitative properties of all the isotropic
curvature string models discussed in the text by finding appropriate monotonic functions.
Typically, the curvature term is dynamically significant only at intermediate timesand is
asymptotically negligible. There are only two exceptions to this. The first corresponds to the
case{3 > 0, K̃ > 0}, where the generalized linear dilaton–vacuum attractors and repellers
have a non-negligible curvature. The second case is the{3M > 0, K̃ < 0}model in which the
repellerN represents the curvature-driven solution (A.6). Finally, we note that when3M > 0
there exist heteroclinic sequences in the invariant setK̃ = 0. This implies that the qualitative
behaviour associated with heteroclinic sequences is only valid for solutions which approach
K̃ = 0.
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Appendix. Equilibrium points

In this appendix, we present the analytical solutions to equations (2.11)–(2.16) that represent
all of the equilibrium points that arise in this paper.

The ‘dilaton–vacuum’ solutions correspond to solutions where the axion field is constant
and cosmological constants vanish(3 = 3M = σ̇ = 0). In the spatially flat case(K̃ = 0),
they are power laws:

a = a∗|t |±h∗ ,
e8 = e8∗ |t |±3h∗−1,

eβ = eβ∗ |t |±ε
√
(1−3h2∗)/6,

σ = σ∗,
k = 0,

(A.1)

where{a∗,8∗, σ∗, β∗, h∗} are constants,a ≡ eα is the averaged scale factor of the universe, the
± sign corresponds to the sign oft andε = ±1. These solutions have a curvature singularity
at t = 0. Note that the shifted dilaton field (2.17) satisfies ˙ϕ > 0 for t < 0 and ˙ϕ < 0 for
t > 0. The ‘−’ branch of equation (A.1) corresponds to the lineL+ throughout this paper and
the ‘+’ branch corresponds to the lineL−.
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Another solution which appears when both3 = 3M = 0 andσ̇ = 0 is the Milne form of
flat space:

a = a∗(±t),
8 = 8∗,
β = β∗,
σ = σ∗,
k = −a2

∗,

(A.2)

where{a∗,8∗, β∗, σ∗}are constants. The ‘±’ sign corresponds to the sign oft . These solutions
are labelledS± throughout the paper (noteS+ corresponds tot < 0 andS− corresponds to
t > 0) and arise as saddle points.

There is a line of equilibrium points that arises when the central charge deficit,3, is
included in the action (2.10). This class of solutions has the form

a = a∗,

8 = 8∗ + n

√
63

2 +n2
t,

β = β∗,

σ = σ∗ ±
√

2(1− n2)

3n2
exp

(
−8∗ − n

√
63

2 +n2
t

)
,

k = 1− n2

2 +n2
3a2
∗,

(A.3)

wheren ∈ [−1, 1]. The solution is static, but has non-trivial spatial curvature, dilaton and
axion fields. These solutions are represented by the lineL1 in section 3.1. In that section they
represent past attractors forn ∈ (0, 1] and future attractors forn ∈ [−1, 0). These solutions
were found in [7] for ˙ϕ > 0, where, by employing a perturbation analysis, they were found to
be late-time attractors.

The endpoints of the lineL1 correspond ton = ±1. These represent spatially flat and
isotropic solutions known as the ‘linear dilaton–vacuum’ solutions [23]. They are described
by

a = a∗,
8 = 8∗ ±

√
23t,

β = β∗,
σ = σ∗,
k = 0,

(A.4)

where{a∗,8∗, β∗, σ∗} are constants. The ‘+’ solution is represented by the equilibrium point
C in section 3.2.

We now consider the cosmologies where3 = 0 in the action (2.10). A spatially flat
solution found previously in paper II is given by

a = a∗
[

1
4

√
33M |t |

]1/3
8 = 8∗ − ln

[
1
1633M t

2
]

β = β∗,
σ = σ∗ ± 1

16

√
153M t

2

k = 0,

(A.5)
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where{a∗,8∗, β∗, σ∗} are arbitrary constants and time is defined over the intervalt < 0
(ϕ̇ > 0) for the equilibrium pointS+

1 and t > 0 (ϕ̇ < 0) for the equilibrium pointS−1 in
section 4.1.

There also exists a spatially curved, isotropic solution with a constant axion field. It is
given by

a = 1
2a∗
√
3M |t |,

8 = − ln
[

1
43M t

2
]
,

β = β∗
σ = σ∗,
k = − 3

43Ma
2
∗

(A.6)

where{a∗, β∗, σ∗} are integration constants. The solution fort < 0 is represented by the
equilibrium pointN in section 4.2.

For negative3M, there are also the solutions

a = a∗√±2t
,

8 = 8∗ − ln
[−23M t

2
]
,

β = β∗,
σ = σ∗,
k = 0,

(A.7)

where{a∗,8∗, β∗, σ∗} are constants. The± sign corresponds to the sign oft and ‘+’ solution
corresponds to the repelling equilibrium pointR in section 4.4, whereas the ‘−’ solution
corresponds to the attracting equilibrium pointA in that section.
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